Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.17.0.tar.gz (12.2 MB view details)

Uploaded Source

Built Distributions

onnx-1.17.0-cp312-cp312-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

onnx-1.17.0-cp312-cp312-win32.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86

onnx-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

onnx-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

onnx-1.17.0-cp312-cp312-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

onnx-1.17.0-cp311-cp311-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

onnx-1.17.0-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

onnx-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

onnx-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

onnx-1.17.0-cp311-cp311-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

onnx-1.17.0-cp310-cp310-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

onnx-1.17.0-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

onnx-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

onnx-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

onnx-1.17.0-cp310-cp310-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

onnx-1.17.0-cp39-cp39-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.17.0-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

onnx-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

onnx-1.17.0-cp39-cp39-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

onnx-1.17.0-cp38-cp38-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.17.0-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

onnx-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

onnx-1.17.0-cp38-cp38-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file onnx-1.17.0.tar.gz.

File metadata

  • Download URL: onnx-1.17.0.tar.gz
  • Upload date:
  • Size: 12.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for onnx-1.17.0.tar.gz
Algorithm Hash digest
SHA256 48ca1a91ff73c1d5e3ea2eef20ae5d0e709bb8a2355ed798ffc2169753013fd3
MD5 3bb7fe474d76ee33a6a34f97aed104ea
BLAKE2b-256 9a540e385c26bf230d223810a9c7d06628d954008a5e5e4b73ee26ef02327282

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: onnx-1.17.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for onnx-1.17.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 659b8232d627a5460d74fd3c96947ae83db6d03f035ac633e20cd69cfa029227
MD5 bc7c694a9d27af71d69009cf12cd1c3d
BLAKE2b-256 3555c4d11bee1fdb0c4bd84b4e3562ff811a19b63266816870ae1f95567aa6e1

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: onnx-1.17.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for onnx-1.17.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 317870fca3349d19325a4b7d1b5628f6de3811e9710b1e3665c68b073d0e68d7
MD5 20437012aa69ba69205621a57ec00cc5
BLAKE2b-256 ae206da11042d2ab870dfb4ce4a6b52354d7651b6b4112038b6d2229ab9904c4

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f3fb5cc4e2898ac5312a7dc03a65133dd2abf9a5e520e69afb880a7251ec97a
MD5 9018bb506e676bf68bbb6ef25f23d7b0
BLAKE2b-256 3d7c67f4952d1b56b3f74a154b97d0dd0630d525923b354db117d04823b8b49b

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3d955ba2939878a520a97614bcf2e79c1df71b29203e8ced478fa78c9a9c63c2
MD5 812ad4799500931bbfc1067e6ce9916e
BLAKE2b-256 f06cf040652277f514ecd81b7251841f96caa5538365af7df07f86c6018cda2b

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 0e906e6a83437de05f8139ea7eaf366bf287f44ae5cc44b2850a30e296421f2f
MD5 6dabd352b93e153f47f81fb5eaf73840
BLAKE2b-256 b4ddc416a11a28847fafb0db1bf43381979a0f522eb9107b831058fde012dd56

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: onnx-1.17.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for onnx-1.17.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 95c03e38671785036bb704c30cd2e150825f6ab4763df3a4f1d249da48525957
MD5 26e6a2a06e01bc22b224bc69e821c2d1
BLAKE2b-256 51a519b0dfcb567b62e7adf1a21b08b23224f0c2d13842aee4d0abc6f07f9cf5

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: onnx-1.17.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for onnx-1.17.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 081ec43a8b950171767d99075b6b92553901fa429d4bc5eb3ad66b36ef5dbe3a
MD5 c31fda20794a9f4dfd5a9864ab498b8e
BLAKE2b-256 ac599ea23fc22d0bb853133f363e6248e31bcbc6c1c90543a3938c00412ac02a

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a183c6178be001bf398260e5ac2c927dc43e7746e8638d6c05c20e321f8c949
MD5 cb23d2e761810b163762a3af1dc921c1
BLAKE2b-256 b12f91092557ed478e323a2b4471e2081fdf88d1dd52ae988ceaf7db4e4506ff

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f01a4b63d4e1d8ec3e2f069e7b798b2955810aa434f7361f01bc8ca08d69cce4
MD5 0fda4b90ba97784392354680aecbd589
BLAKE2b-256 7be3cc80110e5996ca61878f7b4c73c7a286cd88918ff35eacb60dc75ab11ef5

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 d6fc3a03fc0129b8b6ac03f03bc894431ffd77c7d79ec023d0afd667b4d35869
MD5 786f1bd0b4443522884f8e6f736e4425
BLAKE2b-256 e5a98d1b1d53aec70df53e0f57e9f9fcf47004276539e29230c3d5f1f50719ba

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: onnx-1.17.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for onnx-1.17.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dfd777d95c158437fda6b34758f0877d15b89cbe9ff45affbedc519b35345cf9
MD5 4304624f39e150320b6fa70e9e228828
BLAKE2b-256 0ed3d26ebf590a65686dde6b27fef32493026c5be9e42083340d947395f93405

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: onnx-1.17.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for onnx-1.17.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 0141c2ce806c474b667b7e4499164227ef594584da432fd5613ec17c1855e311
MD5 006a4dce5ae414af374e3442f42f4a64
BLAKE2b-256 08a9c1f218085043dccc6311460239e253fa6957cf12ee4b0a56b82014938d0b

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3193a3672fc60f1a18c0f4c93ac81b761bc72fd8a6c2035fa79ff5969f07713e
MD5 42b7face4dcabcd3973ce93ea774cb2c
BLAKE2b-256 dd5bc4f95dbe652d14aeba9afaceb177e9ffc48ac3c03048dd3f872f26f07e34

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d545335cb49d4d8c47cc803d3a805deb7ad5d9094dc67657d66e568610a36d7d
MD5 2cd4903bd4e987786511a8e507bb25f8
BLAKE2b-256 750d831807a18db2a5e8f7813848c59272b904a4ef3939fe4d1288cbce9ea735

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 38b5df0eb22012198cdcee527cc5f917f09cce1f88a69248aaca22bd78a7f023
MD5 def107e185532c184633789a0f01729b
BLAKE2b-256 2e2957053ba7787788ac75efb095cfc1ae290436b6d3a26754693cd7ed1b4fac

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.17.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for onnx-1.17.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5ca7a0894a86d028d509cdcf99ed1864e19bfe5727b44322c11691d834a1c546
MD5 33d2d4fb57a6e8f03395172afb69ac55
BLAKE2b-256 578ece0e20200bdf8e8b47679cd56efb1057aa218b29ccdf60a3b4fb6b91064c

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.17.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for onnx-1.17.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 76884fe3e0258c911c749d7d09667fb173365fd27ee66fcedaf9fa039210fd13
MD5 39bf74a10365f7759f3f03ca170e0524
BLAKE2b-256 571a79623a6cd305dfcd21888747364994109dfcb6194343157cb8653f1612dc

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8167295f576055158a966161f8ef327cb491c06ede96cc23392be6022071b6ed
MD5 5da1d6e33264913dfe06673ea1af66be
BLAKE2b-256 3ddac19d0f20d310045f4701d75ecba4f765153251d48a32f27a5d6b0a7e3799

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3e19fd064b297f7773b4c1150f9ce6213e6d7d041d7a9201c0d348041009cdcd
MD5 65eef32361e73b980cdfeaad16837f6b
BLAKE2b-256 6194d753c230d56234dd01ad939590a2ed33221b57c61abe513ff6823a69af6e

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 67e1c59034d89fff43b5301b6178222e54156eadd6ab4cd78ddc34b2f6274a66
MD5 17141b60fd21bd4be33c1ab830329586
BLAKE2b-256 49e1c5301ff2afa4c473d32a4e9f1bed5c589cfc4947c79002a00183f4cc0fa1

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.17.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for onnx-1.17.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e4673276b558b5b572b960b7f9ef9214dce9305673683eb289bb97a7df379a4b
MD5 7a9f74cb12ae3fa5fd63cbbdf3cd5ab0
BLAKE2b-256 2dc85cc6f2c7b33547099506dcee04ab3c2dafc4f2f034d67fc158a7bc0a2474

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.17.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for onnx-1.17.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f0e437f8f2f0c36f629e9743d28cf266312baa90be6a899f405f78f2d4cb2e1d
MD5 d4f67f5d3abbc34f0f9ff9003fad7cce
BLAKE2b-256 b146f2b737fc0b9ac86f9686e94b2bcab51e89e49777d308ab1d2d4553f215ba

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea5023a8dcdadbb23fd0ed0179ce64c1f6b05f5b5c34f2909b4e927589ebd0e4
MD5 64d07494036867f810501be279c6d8e5
BLAKE2b-256 fb4c687f641702f3d3c67ce01a17d93cf2a83d7f9d9cb32bd18e397d4ff9580d

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ecf2b617fd9a39b831abea2df795e17bac705992a35a98e1f0363f005c4a5247
MD5 9ba1fa14019811276d5781b463e8b1c3
BLAKE2b-256 f54037d697e99f6385efb0f2b8ae2c2a3e2b78bedfebc1e6bbbae7f29f9d30d4

See more details on using hashes here.

File details

Details for the file onnx-1.17.0-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for onnx-1.17.0-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 23b8d56a9df492cdba0eb07b60beea027d32ff5e4e5fe271804eda635bed384f
MD5 5a3359d903a68b8c74e8785298d355c1
BLAKE2b-256 e1471cfa62d9ddd71fba5dd335b45d6213b3af4f34ecdb22e90f3b4f46621d53

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page