Skip to main content

Array (and numpy) API for ONNX

Project description

https://dev.azure.com/xavierdupre3/onnx-array-api/_apis/build/status/sdpython.onnx-array-api https://badge.fury.io/py/onnx-array-api.svg GitHub Issues MIT License size https://img.shields.io/badge/code%20style-black-000000.svg

onnx-array-api implements a numpy API for ONNX. It gives the user the ability to convert functions written following the numpy API to convert that function into ONNX as well as to execute it.

import numpy as np
from onnx_array_api.npx import absolute, jit_onnx
from onnx_array_api.plotting.text_plot import onnx_simple_text_plot

def l1_loss(x, y):
    return absolute(x - y).sum()


def l2_loss(x, y):
    return ((x - y) ** 2).sum()


def myloss(x, y):
    return l1_loss(x[:, 0], y[:, 0]) + l2_loss(x[:, 1], y[:, 1])


jitted_myloss = jit_onnx(myloss)

x = np.array([[0.1, 0.2], [0.3, 0.4]], dtype=np.float32)
y = np.array([[0.11, 0.22], [0.33, 0.44]], dtype=np.float32)

res = jitted_myloss(x, y)
print(res)

print(onnx_simple_text_plot(jitted_myloss.get_onnx()))

It supports eager mode as well:

import numpy as np
from onnx_array_api.npx import absolute, eager_onnx


def l1_loss(x, y):
    err = absolute(x - y).sum()
    print(f"l1_loss={err.numpy()}")
    return err


def l2_loss(x, y):
    err = ((x - y) ** 2).sum()
    print(f"l2_loss={err.numpy()}")
    return err


def myloss(x, y):
    return l1_loss(x[:, 0], y[:, 0]) + l2_loss(x[:, 1], y[:, 1])


eager_myloss = eager_onnx(myloss)

x = np.array([[0.1, 0.2], [0.3, 0.4]], dtype=np.float32)
y = np.array([[0.11, 0.22], [0.33, 0.44]], dtype=np.float32)

res = eager_myloss(x, y)
print(res)
l1_loss=[0.04]
l2_loss=[0.002]
[0.042]

The library is released on pypi/onnx-array-api and its documentation is published at `

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

onnx_array_api-0.1.1-py3-none-any.whl (64.1 kB view details)

Uploaded Python 3

File details

Details for the file onnx_array_api-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for onnx_array_api-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 23f70a059def814e878d6f47bfd1abd4fd65defa452d53b8a4e91a97516703d5
MD5 29ff3ba38459221de824b26da03a0cb2
BLAKE2b-256 9826abb3222ecaae347ed1dc1e71af82aeb500cc540ad798ffa405503dbcd345

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page