Convert a Chainer model into ONNX
Project description
ONNX-Chainer
All code and functionalities of ONNX-Chainer have been merged into Chainer v7rc1 and this repository supports only bug fixes.
This is an add-on package for ONNX support by Chainer.
Tested environment
Installation
pip install onnx-chainer
Run Test
1. Install test modules
$ pip install onnx-chainer[test-cpu]
Or, on GPU environment
$ pip install cupy # or cupy-cudaXX is useful
$ pip install onnx-chainer[test-gpu]
2. Run tests
$ pytest -m "not gpu"
Or, on GPU environment
$ pytest
Quick Start
First, install ChainerCV to get the pre-trained models.
import numpy as np
import chainer
import chainercv.links as C
import onnx_chainer
model = C.VGG16(pretrained_model='imagenet')
# Pseudo input
x = np.zeros((1, 3, 224, 224), dtype=np.float32)
onnx_chainer.export(model, x, filename='vgg16.onnx')
Supported Functions
Contribution
Any contribution to ONNX-Chainer is welcome!
- Python codes follow Chainer Coding Guidelines
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
onnx-chainer-1.6.0.tar.gz
(30.1 kB
view details)
File details
Details for the file onnx-chainer-1.6.0.tar.gz
.
File metadata
- Download URL: onnx-chainer-1.6.0.tar.gz
- Upload date:
- Size: 30.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 22036cd5b17ae6bae918468bee32aa739cc4191dc4611a6094b4661504b3bc7a |
|
MD5 | 448a36ee0b612f9898f54ec534cddfe7 |
|
BLAKE2b-256 | 8625dd050fc9b316f9270be63660a3dc951ac688ee3fd56cf65e099db5d9e01d |