Skip to main content

Convert a Chainer model into ONNX

Project description


PyPI GitHub license Build Status codecov Documentation Status

All code and functionalities of ONNX-Chainer have been merged into Chainer v7rc1 and this repository supports only bug fixes.

This is an add-on package for ONNX support by Chainer.

Tested environment

see Tested environments


pip install onnx-chainer

Run Test

1. Install test modules

$ pip install onnx-chainer[test-cpu]

Or, on GPU environment

$ pip install cupy  # or cupy-cudaXX is useful
$ pip install onnx-chainer[test-gpu]

2. Run tests

$ pytest -m "not gpu"

Or, on GPU environment

$ pytest

Quick Start

First, install ChainerCV to get the pre-trained models.

import numpy as np

import chainer
import chainercv.links as C
import onnx_chainer

model = C.VGG16(pretrained_model='imagenet')

# Pseudo input
x = np.zeros((1, 3, 224, 224), dtype=np.float32)

onnx_chainer.export(model, x, filename='vgg16.onnx')

Supported Functions

see Supported Functions


Any contribution to ONNX-Chainer is welcome!

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-chainer-1.6.0.tar.gz (30.1 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page