Skip to main content

Python utility for text embeddings in ONNX.

Project description

onnx_embedding_models

utilities for loading and running text embeddings with onnx

CHANGELOG

0.0.14 - 2024-06-19

  • support for loading from any huggingface repo with from_pretrained (provided it has a tokenizer and some onnx model in it)
  • added mxbai-embed-large to the model registry
  • embedding model .encode method now returns numpy arrays by default instead of lists

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx_embedding_models-0.0.16.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

onnx_embedding_models-0.0.16-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file onnx_embedding_models-0.0.16.tar.gz.

File metadata

File hashes

Hashes for onnx_embedding_models-0.0.16.tar.gz
Algorithm Hash digest
SHA256 07b998141bd61d9c65e7626f333230a4927c9dd38035079cef532e7fe10602b9
MD5 59bd93e81b154315c7973e0a24c6cc34
BLAKE2b-256 750c3c9f565a2390f264e5b9b77cb0dbf02d20f323b68abc2951e09fbee61872

See more details on using hashes here.

File details

Details for the file onnx_embedding_models-0.0.16-py3-none-any.whl.

File metadata

File hashes

Hashes for onnx_embedding_models-0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 5b9f535fe5b8fb8e2e26ee5e0f1e7bd3213b2bbaabddfa7f1f9c09b00b43970a
MD5 cbe0794ed5cd6f15b7374aed94320fac
BLAKE2b-256 c7a12e5618c25380cd6ad9d15142ca23de9c88512b7cacda39fd1a012fc55443

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page