Use safetensors with ONNX
Project description
onnx-safetensors
ONNX extension for saving to and loading from safetensors 🤗.
Features
- ✅ Load and save ONNX weights from and to safetensors
- ✅ Support all ONNX data types, including float8, float4 and 4-bit ints
- ✅ Allow ONNX backends (including ONNX Runtime) to use safetensors
Install
pip install --upgrade onnx-safetensors
Usage
Load tensors to an ONNX model
[!TIP] You can use safetensors as external data for ONNX.
import os
import onnx
import onnx_safetensors
# Provide your ONNX model here
model: onnx.ModelProto
tensor_file = "path/to/onnx_model/model.safetensors"
base_dir = "path/to/onnx_model"
data_path = "model.safetensors"
# Apply weights from the safetensors file to the model and turn them to in memory tensor
# NOTE: If model size becomes >2GB you will need to offload weights with onnx_safetensors.save_file, or onnx.save with external data options to keep the onnx model valid
model = onnx_safetensors.load_file(model, tensor_file)
# If you want to use the safetensors file in ONNX Runtime:
# Use safetensors as external data in the ONNX model
model_with_external_data = onnx_safetensors.load_file_as_external_data(model, data_path, base_dir=base_dir)
# Save the modified model
# This model is a valid ONNX model using external data from the safetensors file
onnx.save(model_with_external_data, os.path.join(base_dir, "model_using_safetensors.onnx"))
Save weights to a safetensors file
import onnx
import onnx_safetensors
# Provide your ONNX model here
model: onnx.ModelProto
base_dir = "path/to/onnx_model"
data_path = "model.safetensors"
# Offload weights from ONNX model to safetensors file without changing the model
onnx_safetensors.save_file(model, data_path, base_dir=base_dir, replace_data=False) # Generates model.safetensors
# If you want to use the safetensors file in ONNX Runtime:
# Offload weights from ONNX model to safetensors file and use it as external data for the model by setting replace_data=True
model_with_external_data = onnx_safetensors.save_file(model, data_path, base_dir=base_dir, replace_data=True)
# Save the modified model
# This model is a valid ONNX model using external data from the safetensors file
onnx.save(model_with_external_data, os.path.join(base_dir, "model_using_safetensors.onnx"))
Save an ONNX model with safetensors weights
The save_model function is a convenient way to save both the ONNX model and its weights to separate files:
import onnx_safetensors
# Provide your ONNX model here
model: onnx.ModelProto
# Save model and weights in one step
# This creates model.onnx and model.safetensors
onnx_safetensors.save_model(model, "model.onnx")
# You can also specify a custom name for the weights file
onnx_safetensors.save_model(model, "model.onnx", external_data="weights.safetensors")
Shard large models
For large models, you can automatically shard the weights across multiple safetensors files:
import onnx_safetensors
# Provide your ONNX model here
model: onnx.ModelProto
# Shard the model into multiple files (e.g., 5GB per shard)
# This creates:
# - model.onnx
# - model-00001-of-00003.safetensors
# - model-00002-of-00003.safetensors
# - model-00003-of-00003.safetensors
# - model.safetensors.index.json (index file mapping tensors to shards)
onnx_safetensors.save_model(model, "model.onnx", max_shard_size="5GB")
# You can also use save_file with sharding
onnx_safetensors.save_file(
model,
"weights.safetensors",
base_dir="path/to/save",
max_shard_size="5GB"
)
The sharding format is compatible with the Hugging Face transformers library, making it easy to share and load models across different frameworks.
Embed ONNX model in a safetensors file
For storage or transfer purposes, you can embed an entire ONNX model (structure and weights) into a single safetensors file:
import onnx_safetensors
# Provide your ONNX model here
model: onnx.ModelProto
# Save the entire model (structure + weights) into a safetensors file
onnx_safetensors.save_safetensors_model(model, "model.safetensors")
# Later, extract the model from the safetensors file
model = onnx_safetensors.extract_safetensors_model("model.safetensors")
# Or extract and save to an ONNX file that references the safetensors file as external data
onnx_safetensors.extract_safetensors_model(
"model.safetensors",
output_path="model.onnx"
)
[!NOTE] This format is for storage/transfer only and is not compatible with ONNX Runtime. Use
extract_safetensors_modelwithoutput_pathto create a runnable ONNX model that references the safetensors file as external data.
Command Line Interface
ONNX-safetensors provides a command-line interface for converting ONNX models to use safetensors format:
# Basic conversion
onnx-safetensors convert input.onnx output.onnx
# Convert with sharding (split large models into multiple files)
onnx-safetensors convert input.onnx output.onnx --max-shard-size 5GB
# You can also specify size in MB
onnx-safetensors convert input.onnx output.onnx --max-shard-size 500MB
# Embed an ONNX model into a safetensors file
onnx-safetensors embed input.onnx output.safetensors
The convert command:
- Loads an ONNX model from the input path
- Saves it with safetensors external data to the output path
- Optionally shards large models using
--max-shard-size - Creates index files automatically when sharding is enabled
The embed command:
- Loads an ONNX model from the input path
- Embeds the entire model (structure and weights) into a single safetensors file
- Useful for storage or transfer purposes
- Use
onnx_safetensors.extract_safetensors_modelin Python to extract the model later
Examples
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file onnx_safetensors-1.5.0.tar.gz.
File metadata
- Download URL: onnx_safetensors-1.5.0.tar.gz
- Upload date:
- Size: 17.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
4789a0717505b90a247358950cbea96db2c3fcc69b88f679a8d5beb0451c38a0
|
|
| MD5 |
e37ebd584008fecdcdfb1e139801509c
|
|
| BLAKE2b-256 |
a6d6cdbe71bb8821f5b889621c96d15c8b9f3d94a3636fd44e9017157cab2261
|
Provenance
The following attestation bundles were made for onnx_safetensors-1.5.0.tar.gz:
Publisher:
main.yml on justinchuby/onnx-safetensors
-
Statement:
-
Statement type:
https://in-toto.io/Statement/v1 -
Predicate type:
https://docs.pypi.org/attestations/publish/v1 -
Subject name:
onnx_safetensors-1.5.0.tar.gz -
Subject digest:
4789a0717505b90a247358950cbea96db2c3fcc69b88f679a8d5beb0451c38a0 - Sigstore transparency entry: 830578826
- Sigstore integration time:
-
Permalink:
justinchuby/onnx-safetensors@39dc13888433fef7f02a72c765195100bc0bc910 -
Branch / Tag:
refs/tags/v1.5.0 - Owner: https://github.com/justinchuby
-
Access:
public
-
Token Issuer:
https://token.actions.githubusercontent.com -
Runner Environment:
github-hosted -
Publication workflow:
main.yml@39dc13888433fef7f02a72c765195100bc0bc910 -
Trigger Event:
push
-
Statement type:
File details
Details for the file onnx_safetensors-1.5.0-py3-none-any.whl.
File metadata
- Download URL: onnx_safetensors-1.5.0-py3-none-any.whl
- Upload date:
- Size: 16.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
f3cf3342bf3dd4cb468ca85806f94bec8c99ac2739a27e2a97945f8eb63783b8
|
|
| MD5 |
50ff9166655efb7a0c8f54da2386d385
|
|
| BLAKE2b-256 |
a311854082ccec96d2cedc0479c47b96c8b643e285d3345c1d288116dfbd469b
|
Provenance
The following attestation bundles were made for onnx_safetensors-1.5.0-py3-none-any.whl:
Publisher:
main.yml on justinchuby/onnx-safetensors
-
Statement:
-
Statement type:
https://in-toto.io/Statement/v1 -
Predicate type:
https://docs.pypi.org/attestations/publish/v1 -
Subject name:
onnx_safetensors-1.5.0-py3-none-any.whl -
Subject digest:
f3cf3342bf3dd4cb468ca85806f94bec8c99ac2739a27e2a97945f8eb63783b8 - Sigstore transparency entry: 830578862
- Sigstore integration time:
-
Permalink:
justinchuby/onnx-safetensors@39dc13888433fef7f02a72c765195100bc0bc910 -
Branch / Tag:
refs/tags/v1.5.0 - Owner: https://github.com/justinchuby
-
Access:
public
-
Token Issuer:
https://token.actions.githubusercontent.com -
Runner Environment:
github-hosted -
Publication workflow:
main.yml@39dc13888433fef7f02a72c765195100bc0bc910 -
Trigger Event:
push
-
Statement type: