Skip to main content

Nice Onnx to Pytorch converter

Project description

onnx2torch is an ONNX to PyTorch converter. Our converter:

  • Is easy to use – Convert the ONNX model with the function call convert;
  • Is easy to extend – Write your own custom layer in PyTorch and register it with @add_converter;
  • Convert back to ONNX – You can convert the model back to ONNX using the torch.onnx.export function.

If you find an issue, please let us know! And feel free to create merge requests.

Please note that this converter covers only a limited number of PyTorch / ONNX models and operations. Let us know which models you use or want to convert from onnx to torch here.

Installation

pip install onnx2torch

or

conda install -c conda-forge onnx2torch

Usage

Below you can find some examples of use.

Convert

import torch
from onnx2torch import convert

# Path to ONNX model
onnx_model_path = '/some/path/mobile_net_v2.onnx'
# You can pass the path to the onnx model to convert it or...
torch_model_1 = convert(onnx_model_path)

# Or you can load a regular onnx model and pass it to the converter
onnx_model = onnx.load(onnx_model_path)
torch_model_2 = convert(onnx_model)

Execute

We can execute the returned PyTorch model in the same way as the original torch model.

import onnxruntime as ort
# Create example data
x = torch.ones((1, 2, 224, 224)).cuda()

out_torch = torch_model_1(x)

ort_sess = ort.InferenceSession(onnx_model_path)
outputs_ort = ort_sess.run(None, {'input': x.numpy()})

# Check the Onnx output against PyTorch
print(torch.max(torch.abs(outputs_ort - out_torch.detach().numpy())))
print(np.allclose(outputs_ort, out_torch.detach().numpy(), atol=1.e-7))

Models

We have tested the following models:

Segmentation models:

  • DeepLabv3plus
  • DeepLabv3 resnet50 (torchvision)
  • HRNet
  • UNet (torchvision)
  • FCN resnet50 (torchvision)
  • lraspp mobilenetv3 (torchvision)

Detection from MMdetection:

Classification from torchvision:

  • Resnet18
  • Resnet50
  • MobileNet v2
  • MobileNet v3 large
  • EfficientNet_b{0, 1, 2, 3}
  • WideResNet50
  • ResNext50
  • VGG16
  • GoogleleNet
  • MnasNet
  • RegNet

Transformers:

  • Vit
  • Swin
  • GPT-J

:page_facing_up: List of currently supported operations can be founded here.

How to add new operations to converter

Here we show how to extend onnx2torch with new ONNX operation, that supported by both PyTorch and ONNX

and has the same behaviour

An example of such a module is Relu

@add_converter(operation_type='Relu', version=6)
@add_converter(operation_type='Relu', version=13)
@add_converter(operation_type='Relu', version=14)
def _(node: OnnxNode, graph: OnnxGraph) -> OperationConverterResult:
    return OperationConverterResult(
        torch_module=nn.ReLU(),
        onnx_mapping=onnx_mapping_from_node(node=node),
    )

Here we have registered an operation named Relu for opset versions 6, 13, 14. Note that the torch_module argument in OperationConverterResult must be a torch.nn.Module, not just a callable object! If Operation's behaviour differs from one opset version to another, you should implement it separately.

but has different behaviour

An example of such a module is ScatterND

# It is recommended to use Enum for string ONNX attributes.
class ReductionOnnxAttr(Enum):
    NONE = 'none'
    ADD = 'add'
    MUL = 'mul'


class OnnxScatterND(nn.Module, OnnxToTorchModuleWithCustomExport):
    def __init__(self, reduction: ReductionOnnxAttr):
        super().__init__()
        self._reduction = reduction

    # The following method should return ONNX attributes with their values as a dictionary.
    # The number of attributes, their names and values depend on opset version;
    # method should return correct set of attributes.
    # Note: add type-postfix for each key: reduction -> reduction_s, where s means "string".
    def _onnx_attrs(self, opset_version: int) -> Dict[str, Any]:
        onnx_attrs: Dict[str, Any] = {}

        # Here we handle opset versions < 16 where there is no "reduction" attribute.
        if opset_version < 16:
            if self._reduction != ReductionOnnxAttr.NONE:
                raise ValueError(
                    'ScatterND from opset < 16 does not support'
                    f'reduction attribute != {ReductionOnnxAttr.NONE.value},'
                    f'got {self._reduction.value}'
                )
            return onnx_attrs

        onnx_attrs['reduction_s'] = self._reduction.value
        return onnx_attrs

    def forward(
        self,
        data: torch.Tensor,
        indices: torch.Tensor,
        updates: torch.Tensor,
    ) -> torch.Tensor:
        def _forward():
            # ScatterND forward implementation...
            return output

        if torch.onnx.is_in_onnx_export():
            # Please follow our convention, args consists of:
            # forward function, operation type, operation inputs, operation attributes.
            onnx_attrs = self._onnx_attrs(opset_version=get_onnx_version())
            return DefaultExportToOnnx.export(_forward, 'ScatterND', data, indices, updates, onnx_attrs)

        return _forward()


@add_converter(operation_type='ScatterND', version=11)
@add_converter(operation_type='ScatterND', version=13)
@add_converter(operation_type='ScatterND', version=16)
def _(node: OnnxNode, graph: OnnxGraph) -> OperationConverterResult:
    node_attributes = node.attributes
    reduction = ReductionOnnxAttr(node_attributes.get('reduction', 'none'))
    return OperationConverterResult(
        torch_module=OnnxScatterND(reduction=reduction),
        onnx_mapping=onnx_mapping_from_node(node=node),
    )

Here we have used a trick to convert the model from torch back to ONNX by defining the custom _ScatterNDExportToOnnx.

Opset version workaround

Incase you are using a model with older opset, try the following workaround:

ONNX Version Conversion - Official Docs

Example
import onnx
from onnx import version_converter
import torch
from onnx2torch import convert

# Load the ONNX model.
model = onnx.load('model.onnx')
# Convert the model to the target version.
target_version = 13
converted_model = version_converter.convert_version(model, target_version)
# Convert to torch.
torch_model = convert(converted_model)
torch.save(torch_model, 'model.pt')

Note: use this only when the model does not convert to PyTorch using the existing opset version. Result might vary.

Acknowledgments

Thanks to Dmitry Chudakov @cakeofwar42 for his contributions.
Special thanks to Andrey Denisov @denisovap2013 for the logo design.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx2torch-1.5.8.tar.gz (42.3 kB view details)

Uploaded Source

Built Distribution

onnx2torch-1.5.8-py3-none-any.whl (119.9 kB view details)

Uploaded Python 3

File details

Details for the file onnx2torch-1.5.8.tar.gz.

File metadata

  • Download URL: onnx2torch-1.5.8.tar.gz
  • Upload date:
  • Size: 42.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for onnx2torch-1.5.8.tar.gz
Algorithm Hash digest
SHA256 9e7437b1d89c84996703178a4e4f5aa0c166c22f842a8568a7d6ac6bf62bfe98
MD5 5eaacc9ec4e19e4de272489ce313f6df
BLAKE2b-256 861cb8a635cce048476ea91757c54f7ec257d1d42af493ec7986edafdb5b262b

See more details on using hashes here.

File details

Details for the file onnx2torch-1.5.8-py3-none-any.whl.

File metadata

  • Download URL: onnx2torch-1.5.8-py3-none-any.whl
  • Upload date:
  • Size: 119.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for onnx2torch-1.5.8-py3-none-any.whl
Algorithm Hash digest
SHA256 bdd839cae9eda0421ee964308cd4a405d9d5855b7ada9142cf072b3059190ae0
MD5 8cbdf6a155099e5be5afdc454eb95e38
BLAKE2b-256 c08bb40be4a72d951c97a7bd5eca86a11b894a0368075971c1a5537f96e2c1bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page