Skip to main content

ONNX to PyTorch converter

Project description


onnx2torch2 is an ONNX to PyTorch converter. Our converter:

If you find an issue, please let us know! And feel free to create merge requests.

Please note that this converter covers only a limited number of PyTorch / ONNX models and operations. Let us know which models you use or want to convert from onnx to torch here.

Installation

pip install .

Usage

Below you can find some examples of use.

Convert

import onnx
import torch
from onnx2torch2 import convert

# Path to ONNX model
onnx_model_path = "/some/path/mobile_net_v2.onnx"
# You can pass the path to the onnx model to convert it or...
torch_model_1 = convert(onnx_model_path)

# Or you can load a regular onnx model and pass it to the converter
onnx_model = onnx.load(onnx_model_path)
torch_model_2 = convert(onnx_model)

Execute

We can execute the returned PyTorch model in the same way as the original torch model.

import onnxruntime as ort

# Create example data
x = torch.ones((1, 2, 224, 224)).cuda()

out_torch = torch_model_1(x)

ort_sess = ort.InferenceSession(onnx_model_path)
outputs_ort = ort_sess.run(None, {"input": x.numpy()})

# Check the Onnx output against PyTorch
print(torch.max(torch.abs(outputs_ort - out_torch.detach().numpy())))
print(np.allclose(outputs_ort, out_torch.detach().numpy(), atol=1.0e-7))

Models

We have tested the following models:

Segmentation models:

  • DeepLabV3+
  • DeepLabV3 ResNet-50 (TorchVision)
  • HRNet
  • UNet (TorchVision)
  • FCN ResNet-50 (TorchVision)
  • LRASPP MobileNetV3 (TorchVision)

Detection from MMdetection:

Classification from TorchVision:

  • ResNet-18
  • ResNet-50
  • MobileNetV2
  • MobileNetV3 Large
  • EfficientNet-B{0, 1, 2, 3}
  • WideResNet-50
  • ResNext-50
  • VGG-16
  • GoogLeNet
  • MnasNet
  • RegNet

Transformers:

  • ViT
  • Swin
  • GPT-J

:page_facing_up: List of currently supported operations can be founded here.

How to add new operations to converter

Here we show how to extend onnx2torch2 with new ONNX operation, that supported by both PyTorch and ONNX

and has the same behaviour

An example of such a module is Relu

@add_converter(operation_type="Relu", version=6)
@add_converter(operation_type="Relu", version=13)
@add_converter(operation_type="Relu", version=14)
def _(node: OnnxNode, graph: OnnxGraph) -> OperationConverterResult:
    return OperationConverterResult(
        torch_module=nn.ReLU(),
        onnx_mapping=onnx_mapping_from_node(node=node),
    )

Here we have registered an operation named Relu for opset versions 6, 13, 14. Note that the torch_module argument in OperationConverterResult must be a torch.nn.Module, not just a callable object! If Operation's behaviour differs from one opset version to another, you should implement it separately.

but has different behaviour

An example of such a module is ScatterND

# It is recommended to use Enum for string ONNX attributes.
class ReductionOnnxAttr(Enum):
    NONE = "none"
    ADD = "add"
    MUL = "mul"


class OnnxScatterND(nn.Module, OnnxToTorchModuleWithCustomExport):
    def __init__(self, reduction: ReductionOnnxAttr):
        super().__init__()
        self._reduction = reduction

    # The following method should return ONNX attributes with their values as a dictionary.
    # The number of attributes, their names and values depend on opset version;
    # method should return correct set of attributes.
    # Note: add type-postfix for each key: reduction -> reduction_s, where s means "string".
    def _onnx_attrs(self, opset_version: int) -> Dict[str, Any]:
        onnx_attrs: Dict[str, Any] = {}

        # Here we handle opset versions < 16 where there is no "reduction" attribute.
        if opset_version < 16:
            if self._reduction != ReductionOnnxAttr.NONE:
                raise ValueError(
                    "ScatterND from opset < 16 does not support"
                    f"reduction attribute != {ReductionOnnxAttr.NONE.value},"
                    f"got {self._reduction.value}"
                )
            return onnx_attrs

        onnx_attrs["reduction_s"] = self._reduction.value
        return onnx_attrs

    def forward(
        self,
        data: torch.Tensor,
        indices: torch.Tensor,
        updates: torch.Tensor,
    ) -> torch.Tensor:
        def _forward():
            # ScatterND forward implementation...
            return output

        if torch.onnx.is_in_onnx_export():
            # Please follow our convention, args consists of:
            # forward function, operation type, operation inputs, operation attributes.
            onnx_attrs = self._onnx_attrs(opset_version=get_onnx_version())
            return DefaultExportToOnnx.export(
                _forward, "ScatterND", data, indices, updates, onnx_attrs
            )

        return _forward()


@add_converter(operation_type="ScatterND", version=11)
@add_converter(operation_type="ScatterND", version=13)
@add_converter(operation_type="ScatterND", version=16)
def _(node: OnnxNode, graph: OnnxGraph) -> OperationConverterResult:
    node_attributes = node.attributes
    reduction = ReductionOnnxAttr(node_attributes.get("reduction", "none"))
    return OperationConverterResult(
        torch_module=OnnxScatterND(reduction=reduction),
        onnx_mapping=onnx_mapping_from_node(node=node),
    )

Here we have used a trick to convert the model from torch back to ONNX by defining the custom _ScatterNDExportToOnnx.

Opset version workaround

In case you are using a model with older opset, try the following workaround:

ONNX Version Conversion - Official Docs

Example
import onnx
from onnx import version_converter
import torch
from onnx2torch2 import convert

# Load the ONNX model.
model = onnx.load("model.onnx")
# Convert the model to the target version.
target_version = 13
converted_model = version_converter.convert_version(model, target_version)
# Convert to torch.
torch_model = convert(converted_model)
torch.save(torch_model, "model.pt")

Note: use this only when the model does not convert to PyTorch using the existing opset version. Result might vary.

Citation

To cite onnx2torch2 use Cite this repository button, or:

@misc{onnx2torch2,
  title={onnx2torch2},
  author={ENOT developers and Kalgin, Igor and Yanchenko, Arseny and Ivanov, Pyoter and Goncharenko, Alexander},
  year={2021},
  howpublished={\url{https://enot.ai/}},
  note={Version: x.y.z}
}

Acknowledgments

Thanks to Dmitry Chudakov @cakeofwar42 for his contributions.
Special thanks to Andrey Denisov @denisovap2013 for the logo design.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx2torch2-2.2.0.tar.gz (50.7 kB view details)

Uploaded Source

Built Distribution

onnx2torch2-2.2.0-py3-none-any.whl (83.3 kB view details)

Uploaded Python 3

File details

Details for the file onnx2torch2-2.2.0.tar.gz.

File metadata

  • Download URL: onnx2torch2-2.2.0.tar.gz
  • Upload date:
  • Size: 50.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for onnx2torch2-2.2.0.tar.gz
Algorithm Hash digest
SHA256 b37ea878a8671784b926d45947afe020c976a5ba326e486e554023161db37538
MD5 df5229e1902bbc580baa521eab4f77a1
BLAKE2b-256 c2721695882d2ee02ab84dd9fa387bf82ef0754b2fd1aeb51bd587fb87b66c04

See more details on using hashes here.

File details

Details for the file onnx2torch2-2.2.0-py3-none-any.whl.

File metadata

  • Download URL: onnx2torch2-2.2.0-py3-none-any.whl
  • Upload date:
  • Size: 83.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for onnx2torch2-2.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 29fdff66fbd8888a27381971f8ebaebbc1efad0d7d86bedec42290759bad269d
MD5 5ac3e36023d5e34d5364bbf434e87307
BLAKE2b-256 ffda0360942548deb445808ad7c5ee179bd93c04235343e61566baee259327d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page