Skip to main content

Converts Machine Learning models to ONNX

Project description

https://github.com/onnx/onnxmltools/blob/master/docs/ONNXMLTools_logo_main.png
Build Status Linux Build Status Windows

Introduction

ONNXMLTools enables you to convert models from different machine learning toolkits into ONNX. Currently the following toolkits are supported:

  • Apple CoreML

  • scikit-learn (subset of models convertible to ONNX)

Install

pip install onnxmltools

Dependancies

scikit-learn is needed to convert a scikit-learn model, coremltools for Apple CoreML.

Example

Here is a simple example to convert a CoreML model:

import onnxmltools
import coremltools

model_coreml = coremltools.utils.load_spec("image_recognition.mlmodel")
model_onnx = onnxmltools.convert.convert_coreml(model_coreml, "Image_Reco")

# Save as text
onnxmltools.utils.save_text(model_onnx, "image_recognition.json")

# Save as protobuf
onnxmltools.utils.save_model(model_onnx, "image_recognition.onnx")

License

MIT License

Acknowledgments

The initial version of this package was developed by the following developers and data scientists at Microsoft during winter 2017: Zeeshan Ahmed, Wei-Sheng Chin, Aidan Crook, Xavier Dupre, Costin Eseanu, Tom Finley, Lixin Gong, Scott Inglis, Pei Jiang, Ivan Matantsev, Prabhat Roy, M. Zeeshan Siddiqui, Shouheng Yi, Shauheen Zahirazami, Yiwen Zhu.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnxmltools-1.0.0.0.tar.gz (97.2 kB view details)

Uploaded Source

Built Distribution

onnxmltools-1.0.0.0-py2.py3-none-any.whl (154.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file onnxmltools-1.0.0.0.tar.gz.

File metadata

File hashes

Hashes for onnxmltools-1.0.0.0.tar.gz
Algorithm Hash digest
SHA256 e4f5195abf157379673a4bada899770969f34c2491c4e8c34ae19fe2d74a6a6f
MD5 3923695fcf707629752f7f982441fd3a
BLAKE2b-256 a9b2f9dab85f34bc4e48208e1523bf07cee8391ef2cae9cd5c618c50ef146e72

See more details on using hashes here.

File details

Details for the file onnxmltools-1.0.0.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for onnxmltools-1.0.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5cc8ac6b3cf2e5f71919d4c5c56e4b407b3108627345f593496c46677a1f70c2
MD5 98c46386d617ae0708bae6e01e732d7d
BLAKE2b-256 434f021c682822f4c3865244fc329825e57fe497c7abe00585454550e54844f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page