Skip to main content

Onnx Text Recognition (OnnxTR): docTR Onnx-Wrapper for high-performance OCR on documents.

Project description

License Build Status codecov Codacy Badge CodeFactor Pypi

:warning: Please note that this is a wrapper around the doctr library to provide a Onnx pipeline for docTR. For feature requests, which are not directly related to the Onnx pipeline, please refer to the base project.

Optical Character Recognition made seamless & accessible to anyone, powered by Onnx

What you can expect from this repository:

  • efficient ways to parse textual information (localize and identify each word) from your documents
  • a Onnx pipeline for docTR, a wrapper around the doctr library - no PyTorch or TensorFlow dependencies
  • more lightweight package with faster inference latency and less required resources
  • 8-Bit quantized models for faster inference on CPU

OCR_example

Installation

Prerequisites

Python 3.9 (or higher) and pip are required to install OnnxTR.

Latest release

You can then install the latest release of the package using pypi as follows:

NOTE:

For GPU support please take a look at: ONNX Runtime. Currently supported execution providers by default are: CPU, CUDA

  • Prerequisites: CUDA & cuDNN needs to be installed before Version table.
pip install "onnxtr[cpu]"
# with gpu support
pip install "onnxtr[gpu]"
# with HTML support
pip install "onnxtr[html]"
# with support for visualization
pip install "onnxtr[viz]"
# with support for all dependencies
pip install "onnxtr[html, gpu, viz]"

Reading files

Documents can be interpreted from PDF / Images / Webpages / Multiple page images using the following code snippet:

from onnxtr.io import DocumentFile
# PDF
pdf_doc = DocumentFile.from_pdf("path/to/your/doc.pdf")
# Image
single_img_doc = DocumentFile.from_images("path/to/your/img.jpg")
# Webpage (requires `weasyprint` to be installed)
webpage_doc = DocumentFile.from_url("https://www.yoursite.com")
# Multiple page images
multi_img_doc = DocumentFile.from_images(["path/to/page1.jpg", "path/to/page2.jpg"])

Putting it together

Let's use the default ocr_predictor model for an example:

from onnxtr.io import DocumentFile
from onnxtr.models import ocr_predictor, EngineConfig

model = ocr_predictor(
    det_arch='fast_base',  # detection architecture
    reco_arch='vitstr_base',  # recognition architecture
    det_bs=4, # detection batch size
    reco_bs=1024, # recognition batch size
    assume_straight_pages=True,  # set to `False` if the pages are not straight (rotation, perspective, etc.) (default: True)
    straighten_pages=False,  # set to `True` if the pages should be straightened before final processing (default: False)
    # Preprocessing related parameters
    preserve_aspect_ratio=True,  # set to `False` if the aspect ratio should not be preserved (default: True)
    symmetric_pad=True,  # set to `False` to disable symmetric padding (default: True)
    # Additional parameters - meta information
    detect_orientation=False,  # set to `True` if the orientation of the pages should be detected (default: False)
    detect_language=False, # set to `True` if the language of the pages should be detected (default: False)
    # DocumentBuilder specific parameters
    resolve_lines=True,  # whether words should be automatically grouped into lines (default: True)
    resolve_blocks=False,  # whether lines should be automatically grouped into blocks (default: False)
    paragraph_break=0.035,  # relative length of the minimum space separating paragraphs (default: 0.035)
    # OnnxTR specific parameters
    # NOTE: 8-Bit quantized models are not available for FAST detection models and can in general lead to poorer accuracy
    load_in_8_bit=False,  # set to `True` to load 8-bit quantized models instead of the full precision onces (default: False)
    # Advanced engine configuration options
    det_engine_cfg=EngineConfig(),  # detection model engine configuration (default: internal predefined configuration)
    reco_engine_cfg=EngineConfig(),  # recognition model engine configuration (default: internal predefined configuration)
    clf_engine_cfg=EngineConfig(),  # classification (orientation) model engine configuration (default: internal predefined configuration)
)
# PDF
doc = DocumentFile.from_pdf("path/to/your/doc.pdf")
# Analyze
result = model(doc)
# Display the result (requires matplotlib & mplcursors to be installed)
result.show()

Visualization sample

Or even rebuild the original document from its predictions:

import matplotlib.pyplot as plt

synthetic_pages = result.synthesize()
plt.imshow(synthetic_pages[0]); plt.axis('off'); plt.show()

Synthesis sample

The ocr_predictor returns a Document object with a nested structure (with Page, Block, Line, Word, Artefact). To get a better understanding of the document model, check out documentation:

You can also export them as a nested dict, more appropriate for JSON format / render it or export as XML (hocr format):

json_output = result.export()  # nested dict
text_output = result.render()  # human-readable text
xml_output = result.export_as_xml()  # hocr format
for output in xml_output:
    xml_bytes_string = output[0]
    xml_element = output[1]
Advanced engine configuration options

You can also define advanced engine configurations for the models / predictors:

from onnxruntime import SessionOptions

from onnxtr.models import ocr_predictor, EngineConfig

general_options = SessionOptions()  # For configuartion options see: https://onnxruntime.ai/docs/api/python/api_summary.html#sessionoptions
general_options.enable_cpu_mem_arena = False

# NOTE: The following would force to run only on the GPU if no GPU is available it will raise an error
# List of strings e.g. ["CUDAExecutionProvider", "CPUExecutionProvider"] or a list of tuples with the provider and its options e.g.
# [("CUDAExecutionProvider", {"device_id": 0}), ("CPUExecutionProvider", {"arena_extend_strategy": "kSameAsRequested"})]
providers = [("CUDAExecutionProvider", {"device_id": 0})]  # For available providers see: https://onnxruntime.ai/docs/execution-providers/

engine_config = EngineConfig(
    session_options=general_options,
    providers=providers
)
# We use the default predictor with the custom engine configuration
# NOTE: You can define differnt engine configurations for detection, recognition and classification depending on your needs
predictor = ocr_predictor(
    det_engine_cfg=engine_config,
    reco_engine_cfg=engine_config,
    clf_engine_cfg=engine_config
)

Loading custom exported models

You can also load docTR custom exported models: For exporting please take a look at the doctr documentation.

from onnxtr.models import ocr_predictor, linknet_resnet18, parseq

reco_model = parseq("path_to_custom_model.onnx", vocab="ABC")
det_model = linknet_resnet18("path_to_custom_model.onnx")
model = ocr_predictor(det_arch=det_model, reco_arch=reco_model)

Models architectures

Credits where it's due: this repository is implementing, among others, architectures from published research papers.

Text Detection

Text Recognition

predictor = ocr_predictor()
predictor.list_archs()
{
    'detection archs':
        [
            'db_resnet34',
            'db_resnet50',
            'db_mobilenet_v3_large',
            'linknet_resnet18',
            'linknet_resnet34',
            'linknet_resnet50',
            'fast_tiny',  # No 8-bit support
            'fast_small',  # No 8-bit support
            'fast_base'  # No 8-bit support
        ],
    'recognition archs':
        [
            'crnn_vgg16_bn',
            'crnn_mobilenet_v3_small',
            'crnn_mobilenet_v3_large',
            'sar_resnet31',
            'master',
            'vitstr_small',
            'vitstr_base',
            'parseq'
        ]
}

Documentation

This repository is in sync with the doctr library, which provides a high-level API to perform OCR on documents. This repository stays up-to-date with the latest features and improvements from the base project. So we can refer to the doctr documentation for more detailed information.

NOTE:

  • pretrained is the default in OnnxTR, and not available as a parameter.
  • docTR specific environment variables (e.g.: DOCTR_CACHE_DIR -> ONNXTR_CACHE_DIR) needs to be replaced with ONNXTR_ prefix.

Benchmarks

The CPU benchmarks was measured on a i7-14700K Intel CPU.

The GPU benchmarks was measured on a RTX 4080 Nvidia GPU.

Benchmarking performed on the FUNSD dataset and CORD dataset.

docTR / OnnxTR models used for the benchmarks are fast_base (full precision) | db_resnet50 (8-bit variant) for detection and crnn_vgg16_bn for recognition.

The smallest combination in OnnxTR (docTR) of db_mobilenet_v3_large and crnn_mobilenet_v3_small takes as comparison ~0.17s / Page on the FUNSD dataset and ~0.12s / Page on the CORD dataset in full precision.

  • CPU benchmarks:
Library FUNSD (199 pages) CORD (900 pages)
docTR (CPU) - v0.8.1 ~1.29s / Page ~0.60s / Page
OnnxTR (CPU) - v0.1.2 ~0.57s / Page ~0.25s / Page
OnnxTR (CPU) 8-bit - v0.1.2 ~0.38s / Page ~0.14s / Page
EasyOCR (CPU) - v1.7.1 ~1.96s / Page ~1.75s / Page
PyTesseract (CPU) - v0.3.10 ~0.50s / Page ~0.52s / Page
Surya (line) (CPU) - v0.4.4 ~48.76s / Page ~35.49s / Page
PaddleOCR (CPU) - no cls - v2.7.3 ~1.27s / Page ~0.38s / Page
  • GPU benchmarks:
Library FUNSD (199 pages) CORD (900 pages)
docTR (GPU) - v0.8.1 ~0.07s / Page ~0.05s / Page
docTR (GPU) float16 - v0.8.1 ~0.06s / Page ~0.03s / Page
OnnxTR (GPU) - v0.1.2 ~0.06s / Page ~0.04s / Page
EasyOCR (GPU) - v1.7.1 ~0.31s / Page ~0.19s / Page
Surya (GPU) float16 - v0.4.4 ~3.70s / Page ~2.81s / Page
PaddleOCR (GPU) - no cls - v2.7.3 ~0.08s / Page ~0.03s / Page

Citation

If you wish to cite please refer to the base project citation, feel free to use this BibTeX reference:

@misc{doctr2021,
    title={docTR: Document Text Recognition},
    author={Mindee},
    year={2021},
    publisher = {GitHub},
    howpublished = {\url{https://github.com/mindee/doctr}}
}

License

Distributed under the Apache 2.0 License. See LICENSE for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnxtr-0.3.0.tar.gz (73.1 kB view details)

Uploaded Source

Built Distribution

onnxtr-0.3.0-py3-none-any.whl (97.6 kB view details)

Uploaded Python 3

File details

Details for the file onnxtr-0.3.0.tar.gz.

File metadata

  • Download URL: onnxtr-0.3.0.tar.gz
  • Upload date:
  • Size: 73.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for onnxtr-0.3.0.tar.gz
Algorithm Hash digest
SHA256 b62f8e4c8690447ab30ca19c1875f2fcb919b3712191c812b2a76344f713083c
MD5 5938381ccafc11dfa3d4d2c8c0c1a30f
BLAKE2b-256 478175c6bb75a0ec824a9907e157893f6df77736fbacf40bab6a539e6cfc4ca6

See more details on using hashes here.

File details

Details for the file onnxtr-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: onnxtr-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 97.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for onnxtr-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5faeced34cae04f01d7152813dbbb0b12ec4bdeaa2a3c7a77ba974b46b51d6b6
MD5 df08adb42e5e187830a3e75116c2aaaa
BLAKE2b-256 e5dfd50be3f90d922ed67f4d5751fa67486666e8136e7b632fc4534eb5c1d153

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page