Skip to main content

An LPR data analysis package!

Project description

LAPIN

CI - Test

What it is

A framework for the analysis of on street parking occupancy via Licence Plate Recognition (LPR) data.

Getting started

Requirements

Install Lapin python's requirments with conda :

conda env create --name <YOUR_ENV_NAME> -f environment.yml

Optional

You may need to have a docker installation available on your machine. See Valhalla mapmatching.

Configuration

Project configuration

Create a config file for your project . You can create a blank one by running :

python -m lapin -c

Mapmatching configuration

You have the choice between two mapmatching engine : OSRM and Valhalla. The main difference being that while using Valhalla you can do the matching directly on the Montreal Geobase. Doing so improve the accuracy of the positionning of the plate on the geobase. Thus improving the quality of the results.

Valhalla

To use valhalla, you'll need to compute the OSM network from the geobase file. Then create the valhalla graph with valhalla engine and the OSM network. The step are the following :

  1. Create the OSM graph
python -m lapin --generate-graph
  1. Generate Valhalla's graph
sudo docker run --rm --name valhalla_gis-ops -p 8002:8002 -v $PWD/data/network/valhalla:/custom_files -e tile ghcr.io/gis-ops/docker-valhalla/valhalla:latest'
  1. Specify the use of valhalla in lapin/__main__.py line 113-115.
    matcher_host='<PATH_TO_LAPIN>/lapin/data/network/valhalla/valhalla_tiles.tar',
    matcher_client='valhalla',
    matcher_kwargs={'service_limits':{"trace": {"max_shape": 26000}}}, # your desired config
OSRM

To use OSRM simply identify a valid OSRM instance.

  1. Specify the use of OSRM in lapin/__main__.py line 113-115.
    matcher_host=<ADRESS_TO_OSRM_INSTANCE>,
    matcher_client='osrm',
    matcher_kwargs={},

Note : the instance must be launched with a sufficiently large max-matching-size parameter (e.g. 100000)

Lauching an analysis

Then excecute the package with the following command :

python -m lapin --conf-file <PATH_TO_YOUR_CONF_FILE>

Installing the module

Clone the repo and install the lapin package.

cd <repo_dir>
pip install .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onstreet_parking_study-1.2.2.tar.gz (212.9 kB view details)

Uploaded Source

Built Distribution

onstreet_parking_study-1.2.2-py3-none-any.whl (225.3 kB view details)

Uploaded Python 3

File details

Details for the file onstreet_parking_study-1.2.2.tar.gz.

File metadata

File hashes

Hashes for onstreet_parking_study-1.2.2.tar.gz
Algorithm Hash digest
SHA256 31351cd50fd2c69f8d19caafede594314df8bbc44af7244c4f1ba84a32f56a23
MD5 fa959c6b3bd42f03927850c7d763e9a8
BLAKE2b-256 c5b6eaca6abad4a9d26e725abbc7e3f84d6bd9d311aef2b8d1bd8e252260ac0f

See more details on using hashes here.

File details

Details for the file onstreet_parking_study-1.2.2-py3-none-any.whl.

File metadata

File hashes

Hashes for onstreet_parking_study-1.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9d8b52c6655b1a0825673a7b8737e715152e176b42664719538b6cf1ba11f761
MD5 e9c3c71643b42dc0233879c587693352
BLAKE2b-256 3928f2bfda59e2ee32b8048b2432559c28cba05b8220fec9cb48fd739fe60bb1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page