Skip to main content

OntoGPT

Project description

OntoGPT

DOI PyPI

Introduction

OntoGPT is a Python package for extracting structured information from text with large language models (LLMs), instruction prompts, and ontology-based grounding.

For more details, please see the full documentation.

Quick Start

OntoGPT runs on the command line, though there's also a minimal web app interface (see Web Application section below).

  1. Ensure you have Python 3.9 or greater installed.

  2. Install with pip:

    pip install ontogpt
    
  3. Set your OpenAI API key:

    runoak set-apikey -e openai <your openai api key>
    
  4. See the list of all OntoGPT commands:

    ontogpt --help
    
  5. Try a simple example of information extraction:

    echo "One treatment for high blood pressure is carvedilol." > example.txt
    ontogpt extract -i example.txt -t drug
    

    OntoGPT will retrieve the necessary ontologies and output results to the command line. Your output will provide all extracted objects under the heading extracted_object.

Web Application

There is a bare bones web application for running OntoGPT and viewing results.

First, install the required dependencies with pip by running the following command:

pip install ontogpt[web]

Then run this command to start the web application:

web-ontogpt

NOTE: We do not recommend hosting this webapp publicly without authentication.

Evaluations

OntoGPT's functions have been evaluated on test data. Please see the full documentation for details on these evaluations and how to reproduce them.

Related Projects

  • TALISMAN, a tool for generating summaries of functions enriched within a gene set. TALISMAN uses OntoGPT to work with LLMs.

Tutorials and Presentations

  • Presentation: "Staying grounded: assembling structured biological knowledge with help from large language models" - presented by Harry Caufield as part of the AgBioData Consortium webinar series (September 2023)
  • Presentation: "Transforming unstructured biomedical texts with large language models" - presented by Harry Caufield as part of the BOSC track at ISMB/ECCB 2023 (July 2023)
  • Presentation: "OntoGPT: A framework for working with ontologies and large language models" - talk by Chris Mungall at Joint Food Ontology Workgroup (May 2023)

Citation

The information extraction approach used in OntoGPT, SPIRES, is described further in: Caufield JH, Hegde H, Emonet V, Harris NL, Joachimiak MP, Matentzoglu N, et al. Structured prompt interrogation and recursive extraction of semantics (SPIRES): A method for populating knowledge bases using zero-shot learning. Bioinformatics, Volume 40, Issue 3, March 2024, btae104, https://doi.org/10.1093/bioinformatics/btae104.

Acknowledgements

This project is part of the Monarch Initiative. We also gratefully acknowledge Bosch Research for their support of this research project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ontogpt-0.3.14-py3-none-any.whl (1.2 MB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page