Calculate common OOD detection metrics
Project description
OOD Detection Metrics
Functions for computing metrics commonly used in the field of out-of-distribution (OOD) detection.
Installation
With PIP
pip install ood-metrics
With Conda
conda install -c conda-forge ood-metrics
Metrics functions
AUROC
Calculate and return the area under the ROC curve using unthresholded predictions on the data and a binary true label.
from ood_metrics import auroc
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
assert auroc(scores, labels) == 0.75
AUPR
Calculate and return the area under the Precision Recall curve using unthresholded predictions on the data and a binary true label.
from ood_metrics import aupr
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
assert aupr(scores, labels) == 0.25
FPR @ 95% TPR
Return the FPR when TPR is at least 95%.
from ood_metrics import fpr_at_95_tpr
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
assert fpr_at_95_tpr(scores, labels) == 0.25
Detection Error
Return the misclassification probability when TPR is 95%.
from ood_metrics import detection_error
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
assert detection_error(scores, labels) == 0.05
Calculate all stats
Using predictions and labels, return a dictionary containing all novelty detection performance statistics.
from ood_metrics import calc_metrics
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
assert calc_metrics(scores, labels) == {
'fpr_at_95_tpr': 0.25,
'detection_error': 0.05,
'auroc': 0.75,
'aupr_in': 0.25,
'aupr_out': 0.94375
}
Plotting functions
Plot ROC
Plot an ROC curve based on unthresholded predictions and true binary labels.
from ood_metrics import plot_roc
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
plot_roc(scores, labels)
# Generate Matplotlib AUROC plot
Plot PR
Plot an Precision-Recall curve based on unthresholded predictions and true binary labels.
from ood_metrics import plot_pr
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
plot_pr(scores, labels)
# Generate Matplotlib Precision-Recall plot
Plot Barcode
Plot a visualization showing inliers and outliers sorted by their prediction of novelty.
from ood_metrics import plot_barcode
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
plot_barcode(scores, labels)
# Shows visualization of sort order of labels occording to the scores.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for ood_metrics-1.1.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1247819d025032ee632fbc15340517d2faadcc0333a17ce15953901dfb00e5b0 |
|
MD5 | 5267e176c8cf59db11f1f0a33b3348d5 |
|
BLAKE2b-256 | 1e07ad1c339c1673704446aaec3ff98ea61d0599bdaad4c97346efd227d23355 |