Skip to main content

No project description provided

Project description

ood_detectors

OOD Detectors is a Python package that offers a suite of algorithms designed to identify out-of-distribution samples in datasets. This is crucial for maintaining the reliability and accuracy of machine learning models when faced with unfamiliar data.

PyPI - Version PyPI - Python Version


Table of Contents

Installation

To install OOD Detectors, run the following command:

pip install ood_detectors

Usage

This package includes several OOD detection algorithms, each tailored to different aspects of OOD detection:

  • Likelihood Based: SubSDE_DDM, VPSDE_DDM and VESDE_DDM are likelihood-based methods that use different variations stochastic differential equations for DDMS to detect OOD samples.

  • Residual: This method employs the least significant eigen vector for OOD detection.

All detectors share a common interface:

  1. Initialize the detector with necessary hyperparameters.
  2. Fit the model using fit() with the training data.
  3. Use predict() to obtain OOD scores for new data samples.

Example

import ood_detectors.likelihood as likelihood

ood_detector = likelihood.SubSDE_DDM(feat_dim).to('cuda')
train_loss = ood_detector.fit(train_data, n_epochs, batch_size)
scores = ood_detector.predict(test_data, batch_size)
from ood_detectors import Residual

ood_detector = Residual()
train_loss = ood_detector.fit(train_data)
scores = ood_detector.predict(test_data)

low-level interface

The low-level interface allows you to customize the training process and access the model's internal components.

import ood_detectors.likelihood as likelihood
import ood_detectors.sde as sde_lib 
import ood_detectors.models as models
import ood_detectors.losses as losses
...
sde = sde_lib.subVPSDE(beta_min=beta_min, beta_max=beta_max)

model = models.SimpleMLP(
    channels=feat_dim,
    bottleneck_channels=bottleneck_channels,
    num_res_blocks=num_res_blocks,
    time_embed_dim=time_embed_dim,
    dropout=dropout,
)

optimizer = functools.partial(
                torch.optim.Adam,
                lr=lr,
                betas=(beta1, beta2),
                eps=eps,
                weight_decay=weight_decay,
                )

ood_detector = likelihood.Likelihood(
    sde = sde,
    model = model,
    optimizer = optimizer,
    ).to(device)

update_fn = functools.partial(
    losses.SDE_EMA_Warmup_GradClip, 
    ema_rate=ema_rate,
    warmup=warmup,
    grad_clip=grad_clip,
    continuous=continuous,
    reduce_mean=reduce_mean,
    likelihood_weighting=likelihood_weighting,
    )

train_loss = ood_detector.fit(
    train_data,  
    n_epochs=n_epochs,
    batch_size=batch_size,
    update_fn=update_fn,
    )

Create a custom component

You can create a custom component by doing the same thing as the library does. Good luck!

Evaluate

To assess the performance of the OOD detectors, you can utilize the following metrics:

  • AUC: Area under the ROC curve
  • FPR95: False positive rate when the true positive rate is 95%
import ood_detectors.eval_utils as eval_utils
score_id = ood_detector.predict(train_data)
score_ref = ood_detector.predict(reference_data)
print(f"Train AUC: {eval_utils.auc(-score_ref, -score_id):.2%}")
print(f"Train FPR95: {eval_utils.fpr95(-score_ref, -score_id):.2%}")
results = eval_utils.eval_ood(ood_detector, train_data, reference_data, ood_data, batch_size, verbose=False)
plot_utils.plot(results, id_name, ood_names, encoder=embedding, model=ood_detector.name,
                train_loss=train_loss,
                config=conf,
                )

License

ood_detectors is distributed under the terms of the apache-2.0 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ood_detectors-0.0.9.tar.gz (22.9 kB view details)

Uploaded Source

Built Distribution

ood_detectors-0.0.9-py3-none-any.whl (25.8 kB view details)

Uploaded Python 3

File details

Details for the file ood_detectors-0.0.9.tar.gz.

File metadata

  • Download URL: ood_detectors-0.0.9.tar.gz
  • Upload date:
  • Size: 22.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.0

File hashes

Hashes for ood_detectors-0.0.9.tar.gz
Algorithm Hash digest
SHA256 a29848444c92f3c8f0c173a8e1f649920839a009534918a11308d4863f795c31
MD5 69793b9330748fea8f17f0d78aee0577
BLAKE2b-256 3fd6a55f4bc549efaaabe3d000911be652e72d55a5a47cabc317d531a8ec8ada

See more details on using hashes here.

File details

Details for the file ood_detectors-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for ood_detectors-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 0fbbd6ad6b183bad569879f7e198910f5a4c78317add632f75752f8b41b803c2
MD5 515edff2651af183847901596e4b1e33
BLAKE2b-256 d4039d8a04251b49f904daeaea90545d9a236562434930406d2ca03de7946b42

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page