Minimal Python lib to process OOMMF format output files
Project description
.+------+-------+-------+-------+-------+-------+-------+
.' .' .' .' .' .' .' .'|
+---+--+'------+'------+'------+'------+'------+'------+' -
| | | | | | | | |
| O + O + M + M + F + P + Y + +
| | | | | | | | .'
+------+'------+'------+'------+-------+-------+-------+'
OOMMFPy
A very minimal and simple Python library to read and extract data from OOMMF
magnetisation files omf
, which are also used in MuMax3. In addition to this
library we provide tools to plot omf
files and convert them to vtk
files.
Highlights:
- Read
omf
files in any format - Can also read
ovf
files and MuMax3 files - Painless conversion of the data in an
omf
file into Numpy arrays for data analysis - Fast calculation (using Numpy) of the skyrmion number in a slice of the
system in any plane orientation (
xy
,xz
,yz
) - Fast reading of
omf
files in binary format (using Numpy'sfromfile
) - Minimal and super fast tool to convert
omf
files to VTK format - Plot functions
- Early support for Paraview plugin: read
omf
files directly!
Install
The easiest is to use pip
or poetry
to install the package from
PyPI
pip install oommfpy
The Github address can also be directly used to install the package via pip
pip install git+https://github.com/davidcortesortuno/oommfpy
Alternatively, a setup.py
file is provided to install this library
git clone https://github.com/davidcortesortuno/oommfpy
cd oommfpy
pip install ./
If successful, the plot_omf
and omf2vtk
tools are installed in the
corresponding bin
directory and can be called from the command line.
A C library is built with the installation process, thus the setup file tries to install Cython if is not present in the system.
Paraview plugin
A first version of a reader for Paraview is added in this last version. For now the installation is a bit of a hack:
-
After installing the
oommfpy
library, locate theoommfpy
folder from thesite-packages
directory -
Download the latest version of Paraview with Python > 3.8 support
-
Copy the
oommfpy
directory into the Paraview Pythonsite-packages
folder. For example, for Paraview 5.9.0 installed in thehome
folder:cp -r oommfpy $HOME/ParaView-5.9.0-MPI-Linux-Python3.8-64bit/lib/python3.8/site-packages/
-
Open Paraview and go to
Tools -> Manage Plugins -> Load New
and select the Python file in thetools/
folder ofoommfpy
(you can clone the repository) -
Now you can open any
omf
file without converting to VTK!
Documentation
For now check the doc/ipynb
folder which contains a tutorial with basic
functionality. To load a file with a magnetisation field, which is found more
commonly in simulations, use the MagnetisationData
class. To load any field,
such as the dipolar field, use the FieldData
class.
Scripts to convert omf
to VTK can be called directly as, for example,
omf2vtk -i omfs/my_oommf_output.omf -o test.vtk
The input path can also be a directory or a path with a wildcard, e.g.
omfs/*.omf
. This method assumes the files in the path come from the same
simulation as the tool loads the mesh from the first file in the path and then
only updates the magnetisation fields.
Similar options are provided for the plot_omf
function. Use the --help
for
details.
TODO
- More tests
- Add pyproject.toml file to avoid manual installation of Cython in setup.py
- More options to plotting library
- Print
z
coordinate when computing sk number - Allow Periodic boundaries for the skyrmion number calculation
- Add typing check
- Support for multiple OS
Citation
If you find this library useful, please cite this repository as:
@Misc{Cortes2019,
author = {David Cort{\'e}s-Ortu{\~n}o},
title = {OOMMFPy},
howpublished = {Zenodo doi:10.5281/zenodo.2611194. Github: https://github.com/davidcortesortuno/oommfpy},
year = {2019},
doi = {10.5281/zenodo.2611194},
url = {https://doi.org/10.5281/zenodo.2611194},
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file oommfpy-1.3.tar.gz
.
File metadata
- Download URL: oommfpy-1.3.tar.gz
- Upload date:
- Size: 544.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fd338dd807097649b032ae3fb050f933bdbe5a04621be8fdfd2ae3083494e837 |
|
MD5 | 0edef489c17d9e099821cb2d28306f9c |
|
BLAKE2b-256 | facc0977cd2ad9e9a18cd7990a9b4ba01ae2e532e77d4a3d461dbff7543627a0 |
File details
Details for the file oommfpy-1.3-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: oommfpy-1.3-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 413.8 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60e7bd8eb55d74bf434aeb2991fbc63c45b34042a26586e4e6f3d894b85068b0 |
|
MD5 | 98fc4b5ae0e12ab8a4b83f5ebc64bb72 |
|
BLAKE2b-256 | b223f00a854504bb89a44f3d78725120a0f4995427ae98a9210add39ad30f9ad |
File details
Details for the file oommfpy-1.3-cp39-cp39-manylinux_2_31_x86_64.whl
.
File metadata
- Download URL: oommfpy-1.3-cp39-cp39-manylinux_2_31_x86_64.whl
- Upload date:
- Size: 550.0 kB
- Tags: CPython 3.9, manylinux: glibc 2.31+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 78d07250834aeae1d92aa4e0c755a6efb6765eb696ed744b0c0682ab4dfb4b69 |
|
MD5 | 8bc7474471e640da67e2455bf9b4e405 |
|
BLAKE2b-256 | 9ffac8a24e2ca56de58b1da8af7ee73c6dfc0362d5e5f694d17449f69991b416 |
File details
Details for the file oommfpy-1.3-cp39-cp39-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: oommfpy-1.3-cp39-cp39-macosx_10_15_x86_64.whl
- Upload date:
- Size: 206.2 kB
- Tags: CPython 3.9, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d4173c0d26c5bc2aed637f0991222ea4aabdc70057ad93586730a234c1f1c661 |
|
MD5 | cd9f9c633d8ed914af626aed16f879a8 |
|
BLAKE2b-256 | 5d6ea3a349297fa7fb4d66d827cdc6ea129bb04ef674f3479e6bd9ef2ce71fd7 |
File details
Details for the file oommfpy-1.3-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: oommfpy-1.3-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 413.5 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d1a439ae8a938cc8f3ec8b2bd37f9d5eb770e6bf39fe31cc38387f526793ae64 |
|
MD5 | 8292acad2416345bdeb661ffed33fba0 |
|
BLAKE2b-256 | 581f6204c27a7c83e19609b851b7e075ec1c8a684da288764fdc959f15c92e87 |
File details
Details for the file oommfpy-1.3-cp38-cp38-manylinux_2_31_x86_64.whl
.
File metadata
- Download URL: oommfpy-1.3-cp38-cp38-manylinux_2_31_x86_64.whl
- Upload date:
- Size: 560.0 kB
- Tags: CPython 3.8, manylinux: glibc 2.31+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c28837eb47eae2bcee0ffee40949429e3187966565e61dc20aaf1bfaa08ef6f |
|
MD5 | fe45a818ddde0068c0628eac097b7bb6 |
|
BLAKE2b-256 | 010c5fc2a3bde59a5bdb40cb43fd42554be2c760edaadf583c0ebe4e87dfcf24 |
File details
Details for the file oommfpy-1.3-cp38-cp38-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: oommfpy-1.3-cp38-cp38-macosx_10_15_x86_64.whl
- Upload date:
- Size: 204.2 kB
- Tags: CPython 3.8, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f19b84b73e9d8e1db7ff556554957e3260f9a254031488b69843a88d94ff8cef |
|
MD5 | a5e5bd83f78a899c55d1b3eb84addec7 |
|
BLAKE2b-256 | 64ab4ae0a2eee695c8804f9ab334ceb616c36a4f518a347718c80cc399194b16 |