Skip to main content

Text Embeddings for Retrieval and RAG based on transformers

Project description

structure

Open-retrievals unify text embedding, retrieval, reranking and RAG. It's easy, flexible and scalable to fine-tune the model.

  • Embedding fine-tuned through point-wise, pairwise, listwise, contrastive learning and LLM.
  • Reranking fine-tuned with Cross-Encoder, ColBERT and LLM.
  • Easily build enhanced modular RAG, integrated with Transformers, Langchain and LlamaIndex.
Experiment Model Original Finetuned Demo
embed pairwise finetune bge-base-zh-v1.5 0.657 0.703 Open In Colab
embed LLM finetune (LoRA) e5-mistral-7b-instruct 0.651 0.699 Open In Colab
rerank cross encoder bge-reranker-base 0.666 0.706 Open In Colab
rerank colbert bge-m3 0.657 0.695 Open In Colab
rerank LLM (LoRA) bge-reranker-v2-gemma 0.637 0.706 Open In Colab

Installation

With pip

pip install transformers
pip install open-retrievals

Quick-start

Open In Colab

Embedding from pretrained weights
from retrievals import AutoModelForEmbedding

sentences = [
    'query: how much protein should a female eat',
    'query: summit define',
    "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
    "passage: Definition of summit for English Language Learners. : 1  the highest point of a mountain : the top of a mountain. : 2  the highest level. : 3  a meeting or series of meetings between the leaders of two or more governments."
]
model_name_or_path = 'intfloat/e5-base-v2'
model = AutoModelForEmbedding.from_pretrained(model_name_or_path, pooling_method="mean")
embeddings = model.encode(sentences, normalize_embeddings=True)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
Index building for dense retrieval search
from retrievals import AutoModelForEmbedding, AutoModelForRetrieval

sentences = ['A dog is chasing car.', 'A man is playing a guitar.']
model_name_or_path = "sentence-transformers/all-MiniLM-L6-v2"
index_path = './database/faiss/faiss.index'
model = AutoModelForEmbedding.from_pretrained(model_name_or_path, pooling_method='mean')
model.build_index(sentences, index_path=index_path)

query_embed = model.encode("He plays guitar.")
matcher = AutoModelForRetrieval()
dists, indices = matcher.search(query_embed, index_path=index_path)
print(indices)
Rerank using pretrained weights
from retrievals import AutoModelForRanking

model_name_or_path: str = "BAAI/bge-reranker-base"
rerank_model = AutoModelForRanking.from_pretrained(model_name_or_path)
scores_list = rerank_model.compute_score(["In 1974, I won the championship in Southeast Asia in my first kickboxing match", "In 1982, I defeated the heavy hitter Ryu Long."])
print(scores_list)
RAG with LangChain integration
pip install langchain
pip install langchain_community
pip install chromadb

Open In Colab

from retrievals.tools.langchain import LangchainEmbedding, LangchainReranker, LangchainLLM
from retrievals import AutoModelForRanking
from langchain.retrievers import ContextualCompressionRetriever
from langchain_community.vectorstores import Chroma as Vectorstore
from langchain.prompts.prompt import PromptTemplate
from langchain.chains import RetrievalQA

persist_directory = './database/faiss.index'
embed_model_name_or_path = "sentence-transformers/all-MiniLM-L6-v2"
rerank_model_name_or_path = "BAAI/bge-reranker-base"
llm_model_name_or_path = "microsoft/Phi-3-mini-128k-instruct"

embeddings = LangchainEmbedding(model_name=embed_model_name_or_path)
vectordb = Vectorstore(
    persist_directory=persist_directory,
    embedding_function=embeddings,
)
retrieval_args = {"search_type" :"similarity", "score_threshold": 0.15, "k": 10}
retriever = vectordb.as_retriever(**retrieval_args)

ranker = AutoModelForRanking.from_pretrained(rerank_model_name_or_path)
reranker = LangchainReranker(model=ranker, top_n=3)
compression_retriever = ContextualCompressionRetriever(
    base_compressor=reranker, base_retriever=retriever
)

llm = LangchainLLM(model_name_or_path=llm_model_name_or_path)

RESPONSE_TEMPLATE = """[INST]
<>
You are a helpful AI assistant. Use the following pieces of context to answer the user's question.<>
Anything between the following `context` html blocks is retrieved from a knowledge base.

    {context}

REMEMBER:
- If you don't know the answer, just say that you don't know, don't try to make up an answer.
- Let's take a deep breath and think step-by-step.

Question: {question}[/INST]
Helpful Answer:
"""

PROMPT = PromptTemplate(template=RESPONSE_TEMPLATE, input_variables=["context", "question"])

qa_chain = RetrievalQA.from_chain_type(
    llm,
    chain_type='stuff',
    retriever=compression_retriever,
    chain_type_kwargs={
        "verbose": True,
        "prompt": PROMPT,
    }
)

user_query = 'Introduce this'
response = qa_chain({"query": user_query})
print(response)

Fine-tuning

Fine-tune embedding
import torch.nn as nn
from datasets import load_dataset
from transformers import AutoTokenizer, AdamW, get_linear_schedule_with_warmup, TrainingArguments
from retrievals import AutoModelForEmbedding, RetrievalTrainer, PairCollator, TripletCollator
from retrievals.losses import ArcFaceAdaptiveMarginLoss, InfoNCE, SimCSE, TripletLoss

model_name_or_path: str = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
batch_size: int = 32
epochs: int = 3

train_dataset = load_dataset('shibing624/nli_zh', 'STS-B')['train']
train_dataset = train_dataset.rename_columns({'sentence1': 'query', 'sentence2': 'positive'})
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
model = AutoModelForEmbedding.from_pretrained(model_name_or_path, pooling_method="mean")
model = model.set_train_type('pairwise')

optimizer = AdamW(model.parameters(), lr=5e-5)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_linear_schedule_with_warmup(
    optimizer, num_warmup_steps=0.05 * num_train_steps, num_training_steps=num_train_steps
)

training_arguments = TrainingArguments(
    output_dir='./checkpoints',
    num_train_epochs=epochs,
    per_device_train_batch_size=batch_size,
    remove_unused_columns=False,
    logging_steps=100,
)
trainer = RetrievalTrainer(
    model=model,
    args=training_arguments,
    train_dataset=train_dataset,
    data_collator=PairCollator(tokenizer, query_max_length=32, document_max_length=128),
    loss_fn=InfoNCE(nn.CrossEntropyLoss(label_smoothing=0.05)),
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
Fine-tune LLM embedding
import torch.nn as nn
from datasets import load_dataset
from transformers import AutoTokenizer, AdamW, get_linear_schedule_with_warmup, TrainingArguments
from retrievals import AutoModelForEmbedding, RetrievalTrainer, PairCollator, TripletCollator
from retrievals.losses import InfoNCE, SimCSE, TripletLoss

def add_instructions(example):
    example['query'] = query_instruction + example['query']
    example['positive'] = document_instruction + example['positive']
    return example

model_name_or_path: str = "Qwen/Qwen2-1.5B-Instruct"
batch_size: int = 8
epochs: int = 3
query_instruction = "Retrieve relevant passages that answer the query\nQuery: "
document_instruction = "Document: "

train_dataset = load_dataset('shibing624/nli_zh', 'STS-B')['train']
train_dataset = train_dataset.rename_columns({'sentence1': 'query', 'sentence2': 'positive'})
train_dataset = train_dataset.map(add_instructions)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
model = AutoModelForEmbedding.from_pretrained(model_name_or_path, pooling_method="last", use_lora=True)
model = model.set_train_type('pairwise', loss_fn=InfoNCE(nn.CrossEntropyLoss(label_smoothing=0.05)))
optimizer = AdamW(model.parameters(), lr=5e-5)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0.05 * num_train_steps, num_training_steps=num_train_steps)

training_arguments = TrainingArguments(
    output_dir='./checkpoints',
    num_train_epochs=epochs,
    per_device_train_batch_size=batch_size,
    remove_unused_columns=False,
    logging_steps=100,
)
trainer = RetrievalTrainer(
    model=model,
    args=training_arguments,
    train_dataset=train_dataset,
    data_collator=PairCollator(tokenizer, query_max_length=64, document_max_length=128),
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
Fine-tune cross-encoder reranking
from transformers import AutoTokenizer, TrainingArguments, get_cosine_schedule_with_warmup, AdamW
from retrievals import RerankCollator, AutoModelForRanking, RerankTrainer, RerankTrainDataset

model_name_or_path: str = "BAAI/bge-reranker-base"
max_length: int = 128
learning_rate: float = 3e-5
batch_size: int = 4
epochs: int = 3
output_dir: str = "./checkpoints"

train_dataset = RerankTrainDataset("C-MTEB/T2Reranking", positive_key="positive", negative_key="negative", dataset_split='dev')
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
model = AutoModelForRanking.from_pretrained(model_name_or_path)
optimizer = AdamW(model.parameters(), lr=learning_rate)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_cosine_schedule_with_warmup(
    optimizer,
    num_warmup_steps=0.05 * num_train_steps,
    num_training_steps=num_train_steps,
)

training_args = TrainingArguments(
    learning_rate=learning_rate,
    per_device_train_batch_size=batch_size,
    num_train_epochs=epochs,
    output_dir=output_dir,
    remove_unused_columns=False,
    logging_steps=100,
    report_to="none",
)
trainer = RerankTrainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    data_collator=RerankCollator(tokenizer, max_length=max_length),
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
Fine-tune ColBERT reranking
import os
import transformers
from transformers import (
    AdamW,
    AutoTokenizer,
    TrainingArguments,
    get_cosine_schedule_with_warmup,
)

from retrievals import ColBERT, ColBertCollator, RerankTrainer, RetrievalTrainDataset
from retrievals.losses import ColbertLoss

transformers.logging.set_verbosity_error()
os.environ["WANDB_DISABLED"] = "true"

model_name_or_path: str = "BAAI/bge-m3"
learning_rate: float = 5e-6
batch_size: int = 32
epochs: int = 3
colbert_dim: int = 1024
output_dir: str = './checkpoints'

train_dataset = RetrievalTrainDataset('C-MTEB/T2Reranking', positive_key='positive', negative_key='negative', dataset_split='dev')
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
data_collator = ColBertCollator(
    tokenizer,
    query_max_length=128,
    document_max_length=256,
    positive_key='positive',
    negative_key='negative',
)
model = ColBERT.from_pretrained(
    model_name_or_path,
    colbert_dim=colbert_dim,
    loss_fn=ColbertLoss(use_inbatch_negative=False),
)

optimizer = AdamW(model.parameters(), lr=learning_rate)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=0.05 * num_train_steps, num_training_steps=num_train_steps)

training_args = TrainingArguments(
    learning_rate=learning_rate,
    per_device_train_batch_size=batch_size,
    num_train_epochs=epochs,
    output_dir=output_dir,
    remove_unused_columns=False,
    logging_steps=100,
)
trainer = RerankTrainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    data_collator=data_collator,
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
Fine-tune LLM reranking
from transformers import (
    AdamW,
    AutoTokenizer,
    TrainingArguments,
    get_cosine_schedule_with_warmup,
)

from retrievals import (
    LLMRanker,
    LLMRerankCollator,
    RerankTrainer,
    RetrievalTrainDataset,
)
from retrievals.losses import TokenLoss

model_name_or_path: str = "Qwen/Qwen2-1.5B-Instruct"
max_length: int = 512
learning_rate: float = 3e-5
batch_size: int = 8
epochs: int = 3
task_prompt: str = (
    """Given a query A and a passage B, determine whether the passage contains an answer to the query"""
    """by providing a prediction of either 'Yes' or 'No'."""
)

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
train_dataset = RetrievalTrainDataset(
    data_name_or_path='C-MTEB/T2Reranking',
    positive_key='positive',
    negative_key='negative',
    query_instruction='A: ',
    document_instruction='B: ',
    dataset_split='dev',
)
data_collator = LLMRerankCollator(tokenizer=tokenizer, max_length=max_length, prompt=task_prompt, add_target_token='Yes')
token_index = tokenizer('Yes', add_special_tokens=False)['input_ids'][-1]
model = LLMRanker.from_pretrained(
    model_name_or_path,
    causal_lm=True,
    use_fp16=True,
    loss_fn=TokenLoss(token_index=token_index),
    use_lora=True,
)

optimizer = AdamW(model.parameters(), lr=learning_rate)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_cosine_schedule_with_warmup(
    optimizer,
    num_warmup_steps=0.05 * num_train_steps,
    num_training_steps=num_train_steps,
)

training_args = TrainingArguments(
    learning_rate=learning_rate,
    per_device_train_batch_size=batch_size,
    num_train_epochs=epochs,
    output_dir="./checkpoints",
    remove_unused_columns=False,
)
trainer = RerankTrainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    data_collator=data_collator,
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()

Reference & Acknowledge

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

open-retrievals-0.0.12.tar.gz (74.6 kB view details)

Uploaded Source

Built Distribution

open_retrievals-0.0.12-py3-none-any.whl (93.8 kB view details)

Uploaded Python 3

File details

Details for the file open-retrievals-0.0.12.tar.gz.

File metadata

  • Download URL: open-retrievals-0.0.12.tar.gz
  • Upload date:
  • Size: 74.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for open-retrievals-0.0.12.tar.gz
Algorithm Hash digest
SHA256 3d1f07161837173d672bca3e0262a5c52f86b6b6ebf63d26f37cd525d7a51831
MD5 b38ea4b1e02285f03bba7dd1192e9a52
BLAKE2b-256 51f2231d7ac63f4503f9706e0254ebc862f84af681da2c7112f68879f1a3cac0

See more details on using hashes here.

File details

Details for the file open_retrievals-0.0.12-py3-none-any.whl.

File metadata

File hashes

Hashes for open_retrievals-0.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 5e308424f3812f9605750a3759a5fa9c43a10c660651b7b772d108c3653e8ebf
MD5 610e8ebbafea854854e392114afa797d
BLAKE2b-256 90634bf2efecf042bbdfdf4602462817bb21026587a2170df9ecc69e26047f2f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page