Skip to main content

A short wrapper of the OpenAI api call.

Project description

中文文档移步这里

Openai API call

PyPI version Tests Documentation Status Coverage

A simple wrapper for OpenAI API, which can be used to send requests and get responses.

Installation

pip install openai-api-call --upgrade

Usage

Set API Key

import openai_api_call as apicall
apicall.api_key = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

Or set OPENAI_API_KEY in ~/.bashrc to avoid setting the API key every time:

# Add the following code to ~/.bashrc
export OPENAI_API_KEY="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

Also, you might set different api_key for each Chat object:

from openai_api_call import Chat
chat = Chat("hello")
chat.api_key = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

Set Proxy (Optional)

from openai_api_call import proxy_on, proxy_off, proxy_status
# Check the current proxy
proxy_status()

# Set proxy(example)
proxy_on(http="127.0.0.1:7890", https="127.0.0.1:7890")

# Check the updated proxy
proxy_status()

# Turn off proxy
proxy_off() 

Alternatively, you can use a proxy URL to send requests from restricted network, as shown below:

from openai_api_call import request

# set request url
request.base_url = "https://api.example.com"

You can set OPENAI_BASE_URL in ~/.bashrc as well.

Basic Usage

Example 1, send prompt and return response:

from openai_api_call import Chat, show_apikey

# Check if API key is set
show_apikey()

# Check if proxy is enabled
proxy_status()

# Send prompt and return response
chat = Chat("Hello, GPT-3.5!")
resp = chat.getresponse(update=False) # Not update the chat history, default to True

Example 2, customize the message template and return the information and the number of consumed tokens:

import openai_api_call as apicall

# Customize the sending template
apicall.default_prompt = lambda msg: [
    {"role": "system", "content": "帮我翻译这段文字"},
    {"role": "user", "content": msg}
]
chat = Chat("Hello!")
# Set the number of retries to Inf
# The timeout for each request is 10 seconds
response = chat.getresponse(temperature=0.5, max_requests=-1, timeout=10)
print("Number of consumed tokens: ", response.total_tokens)
print("Returned content: ", response.content)

# Reset the default template
apicall.default_prompt = None

Example 3, continue chatting based on the last response:

# first call
chat = Chat("Hello, GPT-3.5!")
resp = chat.getresponse() # update chat history, default is True
print(resp.content)

# continue chatting
chat.user("How are you?")
next_resp = chat.getresponse()
print(next_resp.content)

# fake response
chat.user("What's your name?")
chat.assistant("My name is GPT-3.5.")

# get the last result
print(chat[-1])

# save chat history
chat.save("chat_history.log", mode="w") # default to "a"

# print chat history
chat.print_log()

Moreover, you can check the usage status of the API key:

# show usage status of the default API key
chat = Chat()
chat.show_usage_status()

# show usage status of the specified API key
chat.api_key = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
chat.show_usage_status()

Advance usage

Save the chat history to a file:

checkpoint = "tmp.log"
# chat 1
chat = Chat()
chat.save(checkpoint, mode="w") # default to "a"
# chat 2
chat = Chat("hello!")
chat.save(checkpoint)
# chat 3
chat.assistant("你好, how can I assist you today?")
chat.save(checkpoint)

Load the chat history from a file:

# load chats(default)
chats = load_chats(checkpoint)
assert chats == [Chat(log) for log in chat_logs]
# load chat log only
chat_logs = load_chats(checkpoint, chat_log_only=True)
assert chat_logs == [[], [{'role': 'user', 'content': 'hello!'}],
                      [{'role': 'user', 'content': 'hello!'}, 
                       {'role': 'assistant', 'content': '你好, how can I assist you today?'}]]
# load the last message only
chat_msgs = load_chats(checkpoint, last_message_only=True)
assert chat_msgs == ["", "hello!", "你好, how can I assist you today?"]

In general, one can create a function msg2chat and use process_chats to process the data:

def msg2chat(msg):
    chat = Chat(api_key=api_key)
    chat.system("You are a helpful translator for numbers.")
    chat.user(f"Please translate the digit to Roman numerals: {msg}")
    chat.getresponse()

checkpath = "tmp.log"
# first part of the data
msgs = ["1", "2", "3"]
chats = process_chats(msgs, msg2chat, checkpath, clearfile=True)
assert len(chats) == 3
assert all([len(chat) == 3 for chat in chats])
# continue the process
msgs = msgs + ["4", "5", "6"]
continue_chats = process_chats(msgs, msg2chat, checkpath)

License

This package is licensed under the MIT license. See the LICENSE file for more details.

update log

  • Since version 0.2.0, Chat type is used to handle data
  • Since version 0.3.0, you can use different API Key to send requests.
  • Since version 0.4.0, this package is mantained by cubenlp.
  • Since version 0.5.0, one can use process_chats to process the data, with a customized msg2chat function and a checkpoint file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openai_api_call-0.5.1.tar.gz (13.7 kB view details)

Uploaded Source

Built Distribution

openai_api_call-0.5.1-py3-none-any.whl (13.3 kB view details)

Uploaded Python 3

File details

Details for the file openai_api_call-0.5.1.tar.gz.

File metadata

  • Download URL: openai_api_call-0.5.1.tar.gz
  • Upload date:
  • Size: 13.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for openai_api_call-0.5.1.tar.gz
Algorithm Hash digest
SHA256 0584df1003a0dd120722989e84e56aef34ffb8c36da004e1f34c8c83eda77960
MD5 ef9eab20694d1057943def7cff4f4a33
BLAKE2b-256 bfa673216a5369ffb70218868489f45260665ea45c4cebf4a00862ff3ebd656d

See more details on using hashes here.

File details

Details for the file openai_api_call-0.5.1-py3-none-any.whl.

File metadata

File hashes

Hashes for openai_api_call-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5fc7536c4f530052c6dac912b75e3096671255ae5a7b47d3f266507339336362
MD5 553a01b6df9a758cef93ed04ca1eea23
BLAKE2b-256 cedb36af20fa0ce0a787aa94d44b23be38360e984e0b59c1adaae8e5261ed3ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page