Skip to main content

Helper functions to generate OpenAI GPT function calling requests.

Project description

OpenAI Function Calling

GitHub Actions Build Status PyPi Package Version

Helper functions to generate JSON schema dicts for OpenAI ChatGPT function calling requests. See the official Function Calling reference for more information.

Installation

Install from PyPi with:

pip install openai-function-calling

The openai-function-calling package does come with the openai package. It must be installed separately with pip install openai

Usage

Auto-Infer the Function Definition (Beta)

Automatically infer your function name, description, and parameters given a reference to the function. A Function instance is returned which can be converted to JSON schema with .to_json_schema() and then passed to the OpenAI chat completion API:

from typing import Any, Callable
from openai_function_calling import FunctionInferrer
import openai
import json

# Define example functions.

def get_current_weather(location: str, unit: str = "fahrenheit") -> str:
    """Get the current weather and return a summary."""
    return f"It is currently sunny in {location} and 75 degrees {unit}."


def get_tomorrows_weather(location: str, unit: str = "fahrenheit") -> str:
    """Get the weather for tomorrow and return a summary."""
    return f"Tomorrow it will be rainy in {location} and 60 degrees {unit}."

# Infer the function definitions.
get_current_weather_function = FunctionInferrer.infer_from_function_reference(
    get_current_weather
)

get_tomorrows_weather_function = FunctionInferrer.infer_from_function_reference(
    get_tomorrows_weather
)

# Get the function to call from ChatGPT (you would normally have more than one).
response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo-0613",
    messages=[
        {
            "role": "user",
            "content": "What will the weather be like in Boston, MA today?",
        }
    ],
    functions=[
        # Convert the functions to JSON schema.
        get_current_weather_function.to_json_schema(),
        get_tomorrows_weather_function.to_json_schema(),
    ],
)

Define Functions with Objects

Define your function definitions using typed classes Function and Parameter which automatically convert to JSON schema with .to_json_schema methods. See an example below:

from openai_function_calling import Function, FunctionDict, Parameter, JsonSchemaType


def get_current_weather(location: str, unit: str) -> str:
    """Do some stuff in here."""


# Define the function.
get_current_weather_function = Function(
    "get_current_weather",
    "Get the current weather",
    [
        Parameter(
            name="location",
            type=JsonSchemaType.STRING,
            description="The city and state, e.g. San Francisco, CA",
        ),
        Parameter(
            name="unit",
            type=JsonSchemaType.STRING,
            description="The temperature unit to use.",
            enum=["celsius", "fahrenheit"],
        ),
    ],
)

# Convert to a JSON schema dict to send to OpenAI.
get_current_weather_function_schema = get_current_weather_function.to_json_schema()

Convert Functions to OpenAI Compatible JSON

from openai import OpenAI
from openai.types.chat import (
    ChatCompletion,
    ChatCompletionUserMessageParam,
)
from openai_function_calling.tool_helpers import ToolHelpers


# Define our functions.
def get_current_weather(location: str, unit: str) -> str:
    """Get the current weather and return a summary."""
    return f"It is currently sunny in {location} and 75 degrees {unit}."


def get_tomorrows_weather(location: str, unit: str) -> str:
    """Get tomorrow's weather and return a summary."""
    return f"It will be rainy tomorrow in {location} and around 65 degrees {unit}."


openai_client = OpenAI()

# Send the query and our function context to OpenAI.
response: ChatCompletion = openai_client.chat.completions.create(
    model="gpt-3.5-turbo-1106",
    messages=[
        ChatCompletionUserMessageParam(
            role="user", content="What's the weather in Boston MA?"
        ),
    ],
    tools=ToolHelpers.infer_from_function_refs(
        [get_current_weather, get_tomorrows_weather]
    ),
    tool_choice="auto",
)

Examples

To run the examples, set the environment variable OPENAI_API_KEY to your OpenAI API key. For example:

export OPENAI_API_KEY=SOME_KEY_VALUE

# or when running an example

OPENAI_API_KEY=SOME_KEY_VALUE python examples/weather_functions.py

Make sure to also follow all instructions in the Installation section.

See complete examples in the ./examples folder.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openai_function_calling-2.1.0.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

openai_function_calling-2.1.0-py3-none-any.whl (9.9 kB view details)

Uploaded Python 3

File details

Details for the file openai_function_calling-2.1.0.tar.gz.

File metadata

File hashes

Hashes for openai_function_calling-2.1.0.tar.gz
Algorithm Hash digest
SHA256 a58a4aff6903c2d9397aa789f32537201c5bf1e2e67dd9b10402a5d352811c29
MD5 ccedde8715c97ff9ff0b88e3f39598bd
BLAKE2b-256 eedbefa33d7adc5aa4d7e7cc433ed61dd7538257ca66369023c5f6bf49550358

See more details on using hashes here.

File details

Details for the file openai_function_calling-2.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for openai_function_calling-2.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 63cde61035adb7ce582edfaa92ef194f3dc0aebba67cfab6180e19d588ff30ca
MD5 682f0bc4e08aeef61f9ec1275e8d5716
BLAKE2b-256 059f9e76abe319906122ce3902ce3c5c225d06e3ca7700a1cd690275be8f538d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page