Skip to main content

Helper functions to generate OpenAI GPT function calling requests.

Project description

OpenAI Function Calling

GitHub Actions Build Status PyPi Package Version

Helper functions to generate JSON schema dicts for OpenAI ChatGPT function calling requests. See the official Function Calling reference for more information.

Installation

Install from PyPi with:

pip install openai-function-calling

The openai-function-calling package does come with the openai package. It must be installed separately with pip install openai

Usage

Auto-Infer the Function Definition (Beta)

Automatically infer your function name, description, and parameters given a reference to the function. A Function instance is returned which can be converted to JSON schema with .to_json_schema() and then passed to the OpenAI chat completion API:

from typing import Any, Callable
from openai_function_calling import FunctionInferrer
import openai
import json

# Define example functions.

def get_current_weather(location: str, unit: str = "fahrenheit") -> str:
    """Get the current weather and return a summary."""
    return f"It is currently sunny in {location} and 75 degrees {unit}."


def get_tomorrows_weather(location: str, unit: str = "fahrenheit") -> str:
    """Get the weather for tomorrow and return a summary."""
    return f"Tomorrow it will be rainy in {location} and 60 degrees {unit}."

# Infer the function definitions.
get_current_weather_function = FunctionInferrer.infer_from_function_reference(
    get_current_weather
)

get_tomorrows_weather_function = FunctionInferrer.infer_from_function_reference(
    get_tomorrows_weather
)

# Get the function to call from ChatGPT (you would normally have more than one).
response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo-0613",
    messages=[
        {
            "role": "user",
            "content": "What will the weather be like in Boston, MA today?",
        }
    ],
    functions=[
        # Convert the functions to JSON schema.
        get_current_weather_function.to_json_schema(),
        get_tomorrows_weather_function.to_json_schema(),
    ],
)

Define Functions with Objects

Define your function definitions using typed classes Function and Parameter which automatically convert to JSON schema with .to_json_schema methods. See an example below:

from openai_function_calling import Function, FunctionDict, Parameter, JsonSchemaType


def get_current_weather(location: str, unit: str) -> str:
    """Do some stuff in here."""


# Define the function.
get_current_weather_function = Function(
    "get_current_weather",
    "Get the current weather",
    [
        Parameter(
            name="location",
            type=JsonSchemaType.STRING,
            description="The city and state, e.g. San Francisco, CA",
        ),
        Parameter(
            name="unit",
            type=JsonSchemaType.STRING,
            description="The temperature unit to use.",
            enum=["celsius", "fahrenheit"],
        ),
    ],
)

# Convert to a JSON schema dict to send to OpenAI.
get_current_weather_function_schema = get_current_weather_function.to_json_schema()

Convert Functions to OpenAI Compatible JSON

from openai import OpenAI
from openai.types.chat import (
    ChatCompletion,
    ChatCompletionUserMessageParam,
)
from openai_function_calling.tool_helpers import ToolHelpers


# Define our functions.
def get_current_weather(location: str, unit: str) -> str:
    """Get the current weather and return a summary."""
    return f"It is currently sunny in {location} and 75 degrees {unit}."


def get_tomorrows_weather(location: str, unit: str) -> str:
    """Get tomorrow's weather and return a summary."""
    return f"It will be rainy tomorrow in {location} and around 65 degrees {unit}."


openai_client = OpenAI()

# Send the query and our function context to OpenAI.
response: ChatCompletion = openai_client.chat.completions.create(
    model="gpt-3.5-turbo-1106",
    messages=[
        ChatCompletionUserMessageParam(
            role="user", content="What's the weather in Boston MA?"
        ),
    ],
    tools=ToolHelpers.infer_from_function_refs(
        [get_current_weather, get_tomorrows_weather]
    ),
    tool_choice="auto",
)

Examples

To run the examples, set the environment variable OPENAI_API_KEY to your OpenAI API key. For example:

export OPENAI_API_KEY=SOME_KEY_VALUE

# or when running an example

OPENAI_API_KEY=SOME_KEY_VALUE python examples/weather_functions.py

Make sure to also follow all instructions in the Installation section.

See complete examples in the ./examples folder.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openai_function_calling-2.3.0.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

openai_function_calling-2.3.0-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file openai_function_calling-2.3.0.tar.gz.

File metadata

File hashes

Hashes for openai_function_calling-2.3.0.tar.gz
Algorithm Hash digest
SHA256 af98bf0433dbee5e9846a4c54e594e49c37a33d157f2b6900b5914c4c9c03141
MD5 c95bc3403e41b4ab27d5d37b78720835
BLAKE2b-256 9d9548cbbe216655dfab8d401c65e7e941e82e9c64d67cfa3fd8d4bde14610ce

See more details on using hashes here.

File details

Details for the file openai_function_calling-2.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for openai_function_calling-2.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 448dc8b8b184c46a4d9e66270929630c77567c0430291ca7cee210e74027ed30
MD5 8f1202b352bf39c4551bd525c72c2e61
BLAKE2b-256 8b43ffe88e3c3bc82166e92f17c1330869e25f10477f11a8c4a10f42898e8d33

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page