Skip to main content

OpenAI Helper for Easy I/O

Project description

OpenAI-Helper

OpenAI Helper for Easy I/O

Github

https://github.com/craigtrim/openai-helper

Usage

Set the OpenAI credentials

import os
os.environ['OPENAI_KEY'] = "<encrypted key>"
os.environ['OPENAI_ORG'] = "<encrypted key>"

Use CryptoBase.encrypt_str("...") from https://pypi.org/project/baseblock/

Initialize the OpenAI Helper:

run = OpenAITextCompletion().run

This will connect to OpenAI and establish performant callbacks.

Call OpenAI:

run(input_prompt="Generate a one random number between 1 and 5000")

or

run(engine="text-ada-001",
    temperature=1.0,
    max_tokens=256,
    input_prompt="Rewrite the input in grammatical English:\n\nInput: You believe I can help you understand what trust yourself? don't you?\nOutput:\n\n")

The output will contain both the input and output values:

{
   "input":{
      "best_of":1,
      "engine":"text-davinci-003",
      "frequency_penalty":0.0,
      "input_prompt":"Rewrite the input in grammatical English:\n\nInput: You believe I can help you understand what trust yourself? don't you?\nOutput:\n\n",
      "max_tokens":256,
      "presence_penalty":2,
      "temperature":1.0,
      "timeout":5,
      "top_p":1.0
   },
   "output":{
      "choices":[
         {
            "finish_reason":"stop",
            "index":0,
            "logprobs":"None",
            "text":"Don't you believe that I can help you understand trust in yourself?"
         }
      ],
      "created":1659051242,
      "id":"cmpl-5Z7IwXM5bCwWj8IuHaGnOLn6bCvHz",
      "model":"text-ada-001",
      "object":"text_completion",
      "usage":{
         "completion_tokens":17,
         "prompt_tokens":32,
         "total_tokens":49
      }
   }
}

Supported Parameters and Defaults

This method signature describes support:

def process(self,
            input_prompt: str,
            engine: str = None,
            best_of: int = None,
            temperature: float = None,
            max_tokens: int = None,
            top_p: float = None,
            frequency_penalty: int = None,
            presence_penalty: int = None) -> dict:
    """ Run an OpenAI event

    Args:
        input_prompt (str): The Input Prompt to execute against OpenAI
        engine (str, optional): The OpenAI model (engine) to run against. Defaults to None.
            Options as of July, 2022 are:
                'text-davinci-003'
                'text-curie-001',
                'text-babbage-001'
                'text-ada-001'
        best_of (int, optional): Generates Multiple Server-Side Combinations and only selects the best. Defaults to None.
            This can really eat up OpenAI tokens so use with caution!
        temperature (float, optional): Control Randomness; Scale is 0.0 - 1.0. Defaults to None.
            Scale is 0.0 - 1.0
            Lower values approach predictable outputs and determinate behavior
            Higher values are more engaging but also less predictable
            Use High Values cautiously
        max_tokens (int, optional): The Maximum Number of tokens to generate. Defaults to None.
            Requests can use up to 4,000 tokens (this takes the length of the input prompt into account)
            The higher this value, the more each request will cost.
        top_p (float, optional): Controls Diversity via Nucleus Sampling. Defaults to None.
            no idea what this means
        frequency_penalty (int, optional): How much to penalize new tokens based on their frequency in the text so far. Defaults to None.
            Scale: 0.0 - 2.0.
        presence_penalty (int, optional): Seems similar to frequency penalty. Defaults to None.

    Returns:
        dict: an output dictionary with two keys:
            input: the input dictionary with validated parameters and default values where appropriate
            output: the output event from OpenAI
    """

Counting Tokens (tiktoken)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openai-helper-0.1.49.tar.gz (19.9 kB view details)

Uploaded Source

Built Distribution

openai_helper-0.1.49-py3-none-any.whl (33.9 kB view details)

Uploaded Python 3

File details

Details for the file openai-helper-0.1.49.tar.gz.

File metadata

  • Download URL: openai-helper-0.1.49.tar.gz
  • Upload date:
  • Size: 19.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.8.5 Windows/10

File hashes

Hashes for openai-helper-0.1.49.tar.gz
Algorithm Hash digest
SHA256 b8c5252ecd310b2e966f2bf15d17cd64c0a24a0fb1f7925b4770288529407866
MD5 a9a8067f99b0f1f06d92f57b7d75f506
BLAKE2b-256 0868cbaa7d39ac23f6ff58ae19cdae1071757e11e26e1d7e978832c78c92eec0

See more details on using hashes here.

Provenance

File details

Details for the file openai_helper-0.1.49-py3-none-any.whl.

File metadata

  • Download URL: openai_helper-0.1.49-py3-none-any.whl
  • Upload date:
  • Size: 33.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.8.5 Windows/10

File hashes

Hashes for openai_helper-0.1.49-py3-none-any.whl
Algorithm Hash digest
SHA256 dded11dfbeb53264717d52c9a4267f18dcabda3cb8dc7512bf2e8ae3f9e2011b
MD5 e3395ce61632c49c708f85b81719278f
BLAKE2b-256 7f77651cd54cba7cad3e8163530e0ba409a86f2246bf84d4bf426764f87b41b3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page