Skip to main content

OpenCL cffi bindings and helper classes

Project description

opencl4py
=========

Python cffi OpenCL bindings and helper classes.

Tested with Python 2.7, Python 3.3, Python 3.4 and PyPy on Linux and Windows.

Covered OpenCL API:
```
clBuildProgram
clCreateBuffer
clCreateCommandQueue
clCreateCommandQueueWithProperties
clCreateContext
clCreateKernel
clCreatePipe
clCreateProgramWithSource
clCreateProgramWithBinary
clCreateSubBuffer
clEnqueueCopyBuffer
clEnqueueCopyBufferRect
clEnqueueFillBuffer
clEnqueueMapBuffer
clEnqueueNDRangeKernel
clEnqueueReadBuffer
clEnqueueSVMMap
clEnqueueSVMMemcpy
clEnqueueSVMMemFill
clEnqueueSVMUnmap
clEnqueueUnmapMemObject
clEnqueueWriteBuffer
clFinish
clFlush
clGetDeviceIDs
clGetDeviceInfo
clGetEventProfilingInfo
clGetKernelInfo
clGetKernelWorkGroupInfo
clGetPlatformIDs
clGetPlatformInfo
clGetProgramInfo
clGetProgramBuildInfo
clReleaseCommandQueue
clReleaseContext
clReleaseEvent
clReleaseKernel
clReleaseMemObject
clReleaseProgram
clSetKernelArg
clSetKernelArgSVMPointer
clSVMAlloc
clSVMFree
clWaitForEvents
```

To install the module run:
```bash
pip install .
```
or just copy src/opencl4py to any place where python
interpreter will be able to find it.

To run the tests, execute:

for Python 2.7:
```bash
PYTHONPATH=src nosetests -w tests
```

for Python 3.3, 3.4:
```bash
PYTHONPATH=src nosetests3 -w tests
```

for PyPy:
```bash
PYTHONPATH=src pypy tests/test_api.py
```

Currently, PyPy numpy support may be incomplete,
so tests which use numpy arrays may fail.

Example usage:

```python
import opencl4py as cl
import logging
import numpy


if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
platforms = cl.Platforms()
logging.info("OpenCL devices available:\n\n%s\n",
platforms.dump_devices())
ctx = platforms.create_some_context()
queue = ctx.create_queue(ctx.devices[0])
prg = ctx.create_program(
"""
__kernel void test(__global const float *a, __global const float *b,
__global float *c, const float k) {
size_t i = get_global_id(0);
c[i] = (a[i] + b[i]) * k;
}
""")
krn = prg.get_kernel("test")
a = numpy.arange(1000000, dtype=numpy.float32)
b = numpy.arange(1000000, dtype=numpy.float32)
c = numpy.empty(1000000, dtype=numpy.float32)
k = numpy.array([0.5], dtype=numpy.float32)
a_buf = ctx.create_buffer(cl.CL_MEM_READ_ONLY | cl.CL_MEM_COPY_HOST_PTR,
a)
b_buf = ctx.create_buffer(cl.CL_MEM_READ_ONLY | cl.CL_MEM_COPY_HOST_PTR,
b)
c_buf = ctx.create_buffer(cl.CL_MEM_WRITE_ONLY | cl.CL_MEM_ALLOC_HOST_PTR,
size=c.nbytes)
krn.set_arg(0, a_buf)
krn.set_arg(1, b_buf)
krn.set_arg(2, c_buf)
krn.set_arg(3, k[0:1])
queue.execute_kernel(krn, [a.size], None)
queue.read_buffer(c_buf, c)
max_diff = numpy.fabs(c - (a + b) * k[0]).max()
logging.info("max_diff = %.6f", max_diff)
```

Released under Simplified BSD License.
Copyright (c) 2014, Samsung Electronics Co.,Ltd.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

opencl4py-1.5.1.tar.gz (30.7 kB view details)

Uploaded Source

File details

Details for the file opencl4py-1.5.1.tar.gz.

File metadata

  • Download URL: opencl4py-1.5.1.tar.gz
  • Upload date:
  • Size: 30.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for opencl4py-1.5.1.tar.gz
Algorithm Hash digest
SHA256 eea17700124bb3f244fc22b100817586316709f25ff04dbbec0b3ca0e7e4b696
MD5 4da99489694d133e6441df739aae0fec
BLAKE2b-256 7be41fcb58a4040c19fa67abf66473019f030bb9c0ca7f81c970bf2c86f00bf7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page