Skip to main content

Wrapper package for OpenCV python bindings.

Reason this release was yanked:

Release deprecated

Project description

Downloads

OpenCV on Wheels

Unofficial pre-built OpenCV packages for Python.

Installation and Usage

  1. If you have previous/other manually installed (= not installed via pip) version of OpenCV installed (e.g. cv2 module in the root of Python's site-packages), remove it before installation to avoid conflicts.

  2. Select the correct package for your environment:

    There are four different packages and you should select only one of them. Do not install multiple different packages in the same enviroment.

    a. Packages for standard desktop environments (Windows, macOS, almost any GNU/Linux distribution)

    • run pip install opencv-python if you need only main modules
    • run pip install opencv-contrib-python if you need both main and contrib modules (check extra modules listing from OpenCV documentation)

    b. Packages for server (headless) environments

    These packages do not contain any GUI functionality. They are smaller and suitable for more restricted environments.

    • run pip install opencv-python-headless if you need only main modules
    • run pip install opencv-contrib-python-headless if you need both main and contrib modules (check extra modules listing from OpenCV documentation)
  3. Import the package:

    import cv2

    All packages contain haarcascade files. cv2.data.haarcascades can be used as a shortcut to the data folder. For example:

    cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")

  4. Read OpenCV documentation

  5. Before opening a new issue, read the FAQ below and have a look at the other issues which are already open.

Frequently Asked Questions

Q: Do I need to install also OpenCV separately?

A: No, the packages are special wheel binary packages and they already contain statically built OpenCV binaries.

Q: Pip fails with Could not find a version that satisfies the requirement ...?

A: Most likely the issue is related to too old pip and can be fixed by running pip install --upgrade pip. Note that PyPI does not currently support ARM architecture so you can't install these packages for example on Raspberry Pi.

Q: Import fails on Windows: ImportError: DLL load failed: The specified module could not be found.?

A: If the import fails on Windows, make sure you have Visual C++ redistributable 2015 installed. If you are using older Windows version than Windows 10 and latest system updates are not installed, Universal C Runtime might be also required.

If the above does not help, check if you are using Anaconda. Old Anaconda versions have a bug which causes the error, see this issue for a manual fix.

Q: I have some other import errors?

A: Make sure you have removed old manual installations of OpenCV Python bindings (cv2.so or cv2.pyd in site-packages).

Documentation for opencv-python

AppVeyor CI test status (Windows) Travis CI test status (Linux and OS X)

The aim of this repository is to provide means to package each new OpenCV release for the most used Python versions and platforms.

Build process

The project is structured like a normal Python package with a standard setup.py file. The build process for a single entry in the build matrices is as follows (see for example appveyor.yml file):

  1. Checkout repository and submodules

    • OpenCV is included as submodule and the version is updated manually by maintainers when a new OpenCV release has been made
    • Contrib modules are also included as a submodule
  2. Find OpenCV version from the sources

  3. Install dependencies (numpy)

  4. Build OpenCV

    • tests are disabled, otherwise build time increases too much
    • there are 4 build matrix entries for each build combination: with and without contrib modules, with and without GUI (headless)
    • Linux builds run in manylinux Docker containers (CentOS 5)
  5. Copy each .pyd/.so file to cv2 folder of this project and generate wheel

    • Linux and macOS wheels are checked with auditwheel and delocate
  6. Install the generated wheel

  7. Test that Python can import the library and run some sanity checks

  8. Use twine to upload the generated wheel to PyPI (only in release builds)

The cv2.pyd/.so file is normally copied to site-packages. To avoid polluting the root folder this package wraps the statically built binary into cv2 package and __init__.py file in the package handles the import logic correctly.

Since all packages use the same cv2 namespace explained above, uninstall the other package before switching for example from opencv-python to opencv-contrib-python.

Licensing

Opencv-python package (scripts in this repository) is available under MIT license.

OpenCV itself is available under 3-clause BSD License.

Third party package licenses are at LICENSE-3RD-PARTY.txt.

All wheels ship with FFmpeg licensed under the LGPLv2.1.

Linux and MacOS wheels ship with Qt 4.8.7 licensed under the LGPLv2.1.

Versioning

find_version.py script searches for the version information from OpenCV sources and appends also a revision number specific to this repository to the version string.

Releases

A release is made and uploaded to PyPI when a new tag is pushed to master branch. These tags differentiate packages (this repo might have modifications but OpenCV version stays same) and should be incremented sequentially. In practice, release version numbers look like this:

cv_major.cv_minor.cv_revision.package_revision e.g. 3.1.0.0

Development builds

Every commit to the master branch of this repo will be built. Possible build artifacts use local version identifiers:

cv_major.cv_minor.cv_revision+git_hash_of_this_repo e.g. 3.1.0+14a8d39

These artifacts can't be and will not be uploaded to PyPI.

Manylinux wheels

Linux wheels are built using manylinux. These wheels should work out of the box for most of the distros (which use GNU C standard library) out there since they are built against an old version of glibc.

The default manylinux images have been extended with some OpenCV dependencies. See Docker folder for more info.

Supported Python versions

Python 2.7 is the only supported version in 2.x series. Python 3.x releases follow Numpy releases. For example Python 3.3 is no longer supported by Numpy so support for it has been dropped in opencv-python, too.

Currently, builds for following Python versions are provided:

  • 2.7
  • 3.4
  • 3.5
  • 3.6
  • 3.7

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

opencv_contrib_python-3.4.2.16-cp37-cp37m-win_amd64.whl (39.6 MB view details)

Uploaded CPython 3.7mWindows x86-64

opencv_contrib_python-3.4.2.16-cp37-cp37m-win32.whl (28.0 MB view details)

Uploaded CPython 3.7mWindows x86

opencv_contrib_python-3.4.2.16-cp37-cp37m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (47.9 MB view details)

Uploaded CPython 3.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ x86-64macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

opencv_contrib_python-3.4.2.16-cp36-cp36m-win_amd64.whl (39.6 MB view details)

Uploaded CPython 3.6mWindows x86-64

opencv_contrib_python-3.4.2.16-cp36-cp36m-win32.whl (28.0 MB view details)

Uploaded CPython 3.6mWindows x86

opencv_contrib_python-3.4.2.16-cp36-cp36m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (47.9 MB view details)

Uploaded CPython 3.6mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ x86-64macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

opencv_contrib_python-3.4.2.16-cp35-cp35m-win_amd64.whl (39.6 MB view details)

Uploaded CPython 3.5mWindows x86-64

opencv_contrib_python-3.4.2.16-cp35-cp35m-win32.whl (28.0 MB view details)

Uploaded CPython 3.5mWindows x86

opencv_contrib_python-3.4.2.16-cp35-cp35m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (47.9 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ x86-64macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

opencv_contrib_python-3.4.2.16-cp34-cp34m-win_amd64.whl (39.6 MB view details)

Uploaded CPython 3.4mWindows x86-64

opencv_contrib_python-3.4.2.16-cp34-cp34m-win32.whl (28.0 MB view details)

Uploaded CPython 3.4mWindows x86

opencv_contrib_python-3.4.2.16-cp34-cp34m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (47.9 MB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ x86-64macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

opencv_contrib_python-3.4.2.16-cp27-cp27m-win_amd64.whl (39.6 MB view details)

Uploaded CPython 2.7mWindows x86-64

opencv_contrib_python-3.4.2.16-cp27-cp27m-win32.whl (28.0 MB view details)

Uploaded CPython 2.7mWindows x86

opencv_contrib_python-3.4.2.16-cp27-cp27m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (47.9 MB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ x86-64macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file opencv_contrib_python-3.4.2.16-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bb3dd2dc52727e4f70524ac7a3604e746ae98e5e92f19f237dde1327dd4ae380
MD5 266988b186a8bc46db3a89b74925f067
BLAKE2b-256 a21c778cb8a5f4026d49e299d34a98791599f7485553c29889385c43158b6f43

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 59d18e82f7461374a6e71acf20f321be61a908ccd45dbbad2791766bf1b96952
MD5 c44b30a36717717848a5f7009e71d15b
BLAKE2b-256 e197e05a3f33d767b3ef437c0b5d301d2268a6bb1dc60a256654011e4a06d291

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp37-cp37m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f7f895bbb4c71e8f393595b186f33e5c2369822d74f385d87d94448642671180
MD5 1b5d90e3d7c608d0665556219976b308
BLAKE2b-256 827592bc342c8640ffabe7c97b08829a37f4f9f25f4f937f863aabc11c097e02

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp37-cp37m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp37-cp37m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ea6ac47a74ac85d11d499730a5ff4b779f7c29873491509f64ad89c6938f1314
MD5 2000be531fec460030f8622349db866e
BLAKE2b-256 144d0a775b580c5a24c1d5cbb7add78312e0176101490ba26cd2e49242fa40db

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 db118e27edeac3e43838f2498094fe79075a4f25b0a804f499298e340cb1f0db
MD5 4fb065d8e8658fd00970046a8cd55dce
BLAKE2b-256 6134b0cbb7689ab23b37a7e1b6e2e8da228b2561ca39923a6403b1cf76ac2d31

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0ff7926ea48f822d729ee24abb03ec93ce0e48122e1e2b9cbb103bd446a8afb3
MD5 7f8911e0848b04cf8bc0ab96af46190f
BLAKE2b-256 c343f7698304b0aaac56af27e6140cd1881cbf0a258ff98a7af28784f8af1a36

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8de56394a9a3cf8788559032c2139c622ffdc7e37c32215ec865b4e1cd2ca70d
MD5 ac044fa160fdd1430db1a91b159796e4
BLAKE2b-256 08f166330f4042c4fb3b2d77a159db8e8916d9cdecc29bc8c1f56bc7f8a9bec9

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 652cc7b7cc909ffacf4a4ea56462ae5179e2ddc920cc6f879f1839a28a89799d
MD5 20a15e1c779da8077cac01e1caef15e9
BLAKE2b-256 8109a6c4e01139d1be4a1c2a5826d8071a1e99a9fbdafecf866bb18accdecc63

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp36-cp36m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp36-cp36m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 532756528b5efbc7a06983f41161a8106e2f2ff9a4b5a957c7d3f98f517d244c
MD5 27071d9d7881899d23960200c67c28d7
BLAKE2b-256 b8269c631442c828ec88d4b0017ec39bb6ed655d81b3e99010ad1c841d104d54

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 967f0ef230ea19d1342aae4a0e4cef3836d87bdb9dd55e854245b28350eeca76
MD5 438eb6c49cc30bae4325f4acc8938382
BLAKE2b-256 9c17b16a912d01b5f66338c7da4cd78f9f5985bdff294b6ac8a0d38d66ae93de

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 490085bc08641b79c14b15f534f1094bab9b970095dd667bd588f71fdf3b4c9d
MD5 328e334d1c6a0da681f7f7a8f1f4c8cd
BLAKE2b-256 a1d187069d110d298ad9c712bb01c0ec827ffa1d834919dabbe6b18e17256b5c

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6174d5ac984f7ed5c65671ad3d60a0c4ed59020b2bdaad449adac7150c0f35e8
MD5 6445b57cca6c21898dc095021b1e79e7
BLAKE2b-256 a6ed58f739c1f544d28123e6dcf9abe36021e7e9bf5095e67f1cdd20e565819d

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 239ed587f57d72a946a1ed838337be785e8aff21382fb9335dba1d3512deb8d3
MD5 4ea1cc2bcc3f76edd543f9218da4ef48
BLAKE2b-256 56d3d169e49ab869353d5e6a17b6895fe1f26b8516d37c78fb1074f1b1d34553

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp35-cp35m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp35-cp35m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d8828c75bd7381614307b450e09862bcf797ac5fd1f6e30b4746469f258dd65a
MD5 e2092cfce631a0994c667d5b793aac5a
BLAKE2b-256 3cf62090effa0c57ab15b9dd30973b314d2b81bbfd4582427a63ea43e22ffb6f

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 6e97d937d6af8b308c8365dec6920c80f1d3153c8499daebe398f6319a98bb9a
MD5 f80c34f039b819b260bbfcd74edd9d5a
BLAKE2b-256 0a0e5269b8306526c79362dc8e641a643d172d5da9a271d0ce27723166a91c91

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 8a68a261d96273da415047b081e37c233462a5a78dfa022c8f7899c6c3952df2
MD5 643f9f9f1c343a1de7cd18311aa06162
BLAKE2b-256 a78fe3308fd062bd756a77b295abeb34f71906e2c47b61121ba4a5b666ab4afc

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a66b187cdc95a29a3b853624bf8a7bcc2e0ff16b5c8144505cb8a34327084202
MD5 23111dacafc6bb030b00ddf6e82a5bc0
BLAKE2b-256 7ec72a65227e1b84e8341040d40e2c4762c7b141ff3f0487ef6b7588ea2a908e

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fb06230ad00d085bab441b487276b6612668ca5be9d4ead99222f0c7c00ef06d
MD5 8238509c50600d50c0ddb8c09b38eb15
BLAKE2b-256 dea525e7147248af686534b35559dca6f914411a2af1efe990ddbf51b60b461f

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp34-cp34m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp34-cp34m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 de0951171453a5cbc9d10624e30c6b0ff5ba2b0e84f9b9c9c0b02892bae49100
MD5 d11f736cb8029efc6704e656119f9c41
BLAKE2b-256 07bfa278f82ff8b23182a2efc613a14dd119c8d24dc091775f6ec4fe66df1998

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c64127d0581698a403cc49d930fc898c32cb787cbcbdfaa6026430e9f9381942
MD5 a3a956e6384287a5ca7b7a1d8ea83bee
BLAKE2b-256 431de5e7c01fba5ae64abbf76cb3d38ffb3958c38b46ec6292166e549dde75a1

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d9f294bffeb996221f219674cb4695467fd1127ff9a5eebd42f522e2df63473f
MD5 96cef7614f6d5ed6c95fd746aafa4f2f
BLAKE2b-256 4494cbcbdbf020b18ccc1baaf84bd0db5fe938e7c4f49a582778118fc4052ed6

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 db0d9c905eb0472c5bbeaeb715d0578e4e4855cc48cffb67d0f06dfd75e0ab41
MD5 5d27a24ac3701406182cd0805478f0ae
BLAKE2b-256 2f3f2bfc533dfb467d6c4f0df56db1022233a9b2bd0f28592542161515d53030

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 ea6e37eb29e224ba58017e9125956161c0f7c365ded4c561695020a8875a06d9
MD5 d317c8559ce428af37a19cb67d0afd09
BLAKE2b-256 64aa059fc1b99983d9c6e3573aaf109fe715933e11130373f883ef2a5b0c543f

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 afdcf806b4e7017924a05db3a0af102a242a1d9c04c5a0c8d6c8602b1a68782c
MD5 a56a3393be6e171cec1c5662e460db5e
BLAKE2b-256 450b84604d992d68c599f4e3a009954bc7281e1d3c3e7558c6a5ed5e3ce9e08b

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 534c32b2591fdedf271d0814dd85413087812624b4aef67b628ef741fae90e78
MD5 a24f960ad49ecf50202e492b63cd2c89
BLAKE2b-256 334425450728cf686e3ce8f10c01e3c1177bd277e93b68df446d3220b460f55c

See more details on using hashes here.

File details

Details for the file opencv_contrib_python-3.4.2.16-cp27-cp27m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for opencv_contrib_python-3.4.2.16-cp27-cp27m-macosx_10_6_x86_64.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9be0792a3e11222317d6623f617ac2ac919853fcba6a4f1c325b39e9b73e2747
MD5 50e1fa7876dce4d53716fead809df03d
BLAKE2b-256 a89678dc9e59b0a724913293570a244e988d250dd83659a750ff6b7832967f76

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page