Skip to main content

An open source framework for delta learning (parameter efficient learning).

Project description

An Open-Source Framework for Paramter-Efficient Tuning (Delta Tuning).


OverviewInstallationBasic UsageDocsPerformance

version

Overview

OpenDelta is a toolkit for parameter-efficient tuning methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters frozen. By using OpenDelta, users could easily implement prefix-tuning, adapters, Lora, or any other types of delta tuning with preferred PTMs.

  • The latest version of OpenDelta is tested on Python==3.8.13, PyTorch==1.12.1, transformers==4.22.2. Other versions are likely to be supported as well. If you encounter bugs when using your own package versions, please raise an issue, we will look into it as soon as possible.

  • A demo of using Opendelta to modify the PLM (E.g., BART). How PLM changes using Delta-tuning

News

  • 2022.10.25 Release v0.3.2. Support BMTrain! Improve docs. Add inspect utilities.
  • 2022.10.14 Release v0.3.0. We make the usage of default configurations of each delta tuning methods (i.e., the position they are attached) more friendly! If a custom model has our supported models as submodules inside, the default configuration is also available. Other key changes can be seen in Update Log
  • 2022.10.10 Merge a long-developed branch v0.2.4 into the master branch. Key updates are (1) the an example unifying the delta tuning paradigm and the prompt-tuning paradigm; (2) and support for Delta Center, whose webpage is still under construction. Details can be seen in Update Log
  • 2022.03.24 We notice several bugs in Soft Prompt Tuning and Prefix Tuning, mainly due to their need to customize attention ids, token_type_ids, we are fixing it! Currently, please use the other methods since they are stabler and better in performance.
  • 2022.03.20 Add a colab example to illustrate efficient training and space-saving multitask-serving.
  • 2022.03.20 A new pip version released.
  • 2022.02.16 Support regular expression in named-based addressing.

Installation

  1. create a virtualenv (optional)
conda create -n opendelta_env python=3.8
conda activate opendelta_env

2 install the lastest version

pip install git+https://github.com/thunlp/OpenDelta.git

or install the lastest pip version (more stable)

pip install opendelta

or build from source

git clone git@github.com:thunlp/OpenDelta.git
cd OpenDelta
python setup.py install
# python setup.py develop # if you want to do some modifications on the code for your research:

Must Try

The following codes and comments walk you through the key functionality of OpenDelta. It is also in must_try.py and must_try.ipynb in colab.

# use tranformers as usual.
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
t5 = AutoModelForSeq2SeqLM.from_pretrained("t5-large")
t5_tokenizer = AutoTokenizer.from_pretrained("t5-large")
# A running example
inputs_ids = t5_tokenizer.encode("Is Harry Poter wrtten by JKrowling", return_tensors="pt")
t5_tokenizer.decode(t5.generate(inputs_ids)[0]) 
# >>> '<pad><extra_id_0>? Is it Harry Potter?</s>'


# use existing delta models
from opendelta import AutoDeltaModel, AutoDeltaConfig
# use existing delta models from DeltaCenter
delta = AutoDeltaModel.from_finetuned("thunlp/Spelling_Correction_T5_LRAdapter_demo", backbone_model=t5)
# freeze the whole backbone model except the delta models.
delta.freeze_module()
# visualize the change
delta.log()


t5_tokenizer.decode(t5.generate(inputs_ids)[0]) 
# >>> <pad> Is Harry Potter written by JK Rowling?</s>


# Now save merely the delta models, not the whole backbone model, to tmp/
delta.save_finetuned(".tmp")
import os; os.listdir(".tmp")
# >>>  The state dict size is 1.443 MB
# >>>  We encourage users to push their final and public models to delta center to share them with the community!


# reload the model from local url and add it to pre-trained T5.
t5 = AutoModelForSeq2SeqLM.from_pretrained("t5-large")
delta1 = AutoDeltaModel.from_finetuned(".tmp", backbone_model=t5)
import shutil; shutil.rmtree(".tmp") # don't forget to remove the tmp files. 
t5_tokenizer.decode(t5.generate(inputs_ids)[0]) 
# >>> <pad> Is Harry Potter written by JK Rowling?</s>

# detach the delta models, the model returns to the unmodified status.
delta1.detach()
t5_tokenizer.decode(t5.generate(inputs_ids)[0])  
# >>> '<pad><extra_id_0>? Is it Harry Potter?</s>'

# use default configuration for cunstomized wrapped models which have PLMs inside. This is a common need for users. 
import torch.nn as nn
class WrappedModel(nn.Module):
  def __init__(self, inner_model):
    super().__init__()
    self.inner = inner_model
  def forward(self, *args, **kwargs):
    return self.inner(*args, **kwargs)

wrapped_model = WrappedModel(WrappedModel(t5))

# say we use LoRA
delta_config = AutoDeltaConfig.from_dict({"delta_type":"lora"})
delta2 = AutoDeltaModel.from_config(delta_config, backbone_model=wrapped_model)
delta2.log()
# >>> root
#       -- inner
#          -- inner
#             ...
#             ... lora_A:[8,1024], lora_B:[1024,8]
delta2.detach()

# use a not default configuration
# say we add lora to the last four layer of the decoder of t5, with lora rank=5
delta_config3 = AutoDeltaConfig.from_dict({"delta_type":"lora", "modified_modules":["[r]decoder.*((20)|(21)|(22)|(23)).*DenseReluDense\.wi"], "lora_r":5})
delta3 = AutoDeltaModel.from_config(delta_config3, backbone_model=wrapped_model)
delta3.log()

Verified Default Configurations

  • You can try to use OpenDelta on any backbone models based on PyTorch.

  • However, with small chances that the interface of the submodules of the backbone model is not supported. Therefore we verified some commonly used models that OpenDelta are sure to support.

  • We will keep testing more and more emerging models.

  • Pull requests are welcomed when you successfully apply OpenDelta on your own backbone model.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

opendelta-0.3.2.tar.gz (71.6 kB view details)

Uploaded Source

Built Distribution

opendelta-0.3.2-py3-none-any.whl (88.1 kB view details)

Uploaded Python 3

File details

Details for the file opendelta-0.3.2.tar.gz.

File metadata

  • Download URL: opendelta-0.3.2.tar.gz
  • Upload date:
  • Size: 71.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for opendelta-0.3.2.tar.gz
Algorithm Hash digest
SHA256 5fde1d78db4a52a55262cb3fe452c33a4aa231583e517d8902935d9389acc00a
MD5 91cc0cfef03c090b7fe046270fcc466d
BLAKE2b-256 051de22a8f7425c400bcb55e0e14cfdecbbd39112891bcfa4cedf73f732b7635

See more details on using hashes here.

File details

Details for the file opendelta-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: opendelta-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 88.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for opendelta-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9e371792f7331d995dd4581ee693eaac49ca2d5c8ac5c3584f53a5f3a46adad2
MD5 befe4f3561e8bd47495988545431e7b7
BLAKE2b-256 b3e8c83d2793990141490d82ee9cc646ad8e6236f4a8c828f789a6f94cf72ced

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page