Skip to main content

An Open-source Factuality Evaluation Demo for LLMs

Project description

OpenFactCheck Logo

An Open-source Factuality Evaluation Demo for LLMs


Release Docs
License Python Version PyPI Latest Release arXiv DOI


OverviewInstallationUsageHuggingFace DemoDocumentation

Overview

OpenFactCheck is an open-source repository designed to facilitate the evaluation and enhancement of factuality in responses generated by large language models (LLMs). This project aims to integrate various fact-checking tools into a unified framework and provide comprehensive evaluation pipelines.

Installation

You can install the package from PyPI using pip:

pip install openfactcheck

Usage

First, you need to initialize the OpenFactCheckConfig object and then the OpenFactCheck object.

from openfactcheck import OpenFactCheck, OpenFactCheckConfig

# Initialize the OpenFactCheck object
config = OpenFactCheckConfig()
ofc = OpenFactCheck(config)

Response Evaluation

You can evaluate a response using the ResponseEvaluator class.

# Evaluate a response
result = ofc.ResponseEvaluator.evaluate(response: str)

LLM Evaluation

We provide FactQA, a dataset of 6480 questions for evaluating LLMs. Onc you have the responses from the LLM, you can evaluate them using the LLMEvaluator class.

# Evaluate an LLM
result = ofc.LLMEvaluator.evaluate(model_name: str,
                                   input_path: str)

Checker Evaluation

We provide FactBench, a dataset of 4507 claims for evaluating fact-checkers. Once you have the responses from the fact-checker, you can evaluate them using the CheckerEvaluator class.

# Evaluate a fact-checker
result = ofc.CheckerEvaluator.evaluate(checker_name: str,
                                       input_path: str)

Cite

If you use OpenFactCheck in your research, please cite the following:

@article{wang2024openfactcheck,
  title        = {OpenFactCheck: A Unified Framework for Factuality Evaluation of LLMs},
  author       = {Wang, Yuxia and Wang, Minghan and Iqbal, Hasan and Georgiev, Georgi and Geng, Jiahui and Nakov, Preslav},
  journal      = {arXiv preprint arXiv:2405.05583},
  year         = {2024}
}

@article{iqbal2024openfactcheck,
  title        = {OpenFactCheck: A Unified Framework for Factuality Evaluation of LLMs},
  author       = {Iqbal, Hasan and Wang, Yuxia and Wang, Minghan and Georgiev, Georgi and Geng, Jiahui and Gurevych, Iryna and Nakov, Preslav},
  journal      = {arXiv preprint arXiv:2408.11832},
  year         = {2024}
}

@software{hasan_iqbal_2024_13358665,
  author       = {Hasan Iqbal},
  title        = {hasaniqbal777/OpenFactCheck: v0.3.0},
  month        = {aug},
  year         = {2024},
  publisher    = {Zenodo},
  version      = {v0.3.0},
  doi          = {10.5281/zenodo.13358665},
  url          = {https://doi.org/10.5281/zenodo.13358665}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openfactcheck-0.3.10.tar.gz (6.0 MB view details)

Uploaded Source

Built Distribution

openfactcheck-0.3.10-py3-none-any.whl (6.1 MB view details)

Uploaded Python 3

File details

Details for the file openfactcheck-0.3.10.tar.gz.

File metadata

  • Download URL: openfactcheck-0.3.10.tar.gz
  • Upload date:
  • Size: 6.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.12

File hashes

Hashes for openfactcheck-0.3.10.tar.gz
Algorithm Hash digest
SHA256 d80a469487b17a3dd50a4ce060453d52d7c2e8041ad3dad25b6a6c69cdc633b3
MD5 936e02ef4997f3fc8b0e8523c5e507f9
BLAKE2b-256 08b598cfa33e53e65fae4f4d48b92d0936774d696d6744cd83d8d80a1a64c37f

See more details on using hashes here.

File details

Details for the file openfactcheck-0.3.10-py3-none-any.whl.

File metadata

File hashes

Hashes for openfactcheck-0.3.10-py3-none-any.whl
Algorithm Hash digest
SHA256 29306e6a5e8e5f09b6e666d4dd346a728f8693e0aa2cf6241f30225011b4955e
MD5 06f38bdc75d6b2cc818bac1b36ad8e0e
BLAKE2b-256 e2124c5e364efa144361f274a68cdd6e7cbc6392b3984096c28619191a1dc8d9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page