Skip to main content

OpenInference Anthropic Instrumentation

Project description

OpenInference Anthropic Instrumentation

Python autoinstrumentation library for the Anthropic package

This package implements the following Anthropic clients:

  • Messages
  • Completions
  • AsyncMessages
  • AsyncCompletions

These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as Arize phoenix.

Installation

pip install openinference-instrumentation-anthropic

Quickstart

Through your terminal, install required packages.

pip install openinference-instrumentation-anthropic anthropic arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

You can start Phoenix with the following terminal command:

python -m phoenix.server.main serve

By default, Phoenix listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

Try the following code in a Python file.

  1. Set up AnthropicInstrumentor to trace your application and sends the traces to Phoenix.
  2. Then, set your Anthropic API key as an environment variable.
  3. Lastly, create a Anthropic client, make a request, then go see your results in Phoenix at http://localhost:6006!
import os
from anthropic import Anthropic
from openinference.instrumentation.anthropic import AnthropicInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

# Configure AnthropicInstrumentor with Phoenix endpoint
endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))

AnthropicInstrumentor().instrument(tracer_provider=tracer_provider)

os.environ["ANTHROPIC_API_KEY"] = "YOUR_KEY_HERE"

client = Anthropic()

response = client.messages.create(
    max_tokens=1024,
    messages=[
        {
            "role": "user",
            "content": "Tell me about the history of Iceland!",
        }
    ],
    model="claude-3-opus-20240229",
)
print(response)

Now, on the Phoenix UI on your browser, you should see the traces from your Anthropic application. Click on a trace, then the "Attributes" tab will provide you with in-depth information regarding execution!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_anthropic-0.1.4.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_anthropic-0.1.4.tar.gz
Algorithm Hash digest
SHA256 7a0094547f99d6dc49b67235c7124d8962ed5a4708bf04e578d3e516f454ab32
MD5 cba56a05027e09d0da9340b14caca43d
BLAKE2b-256 a2c7e8ba3a90e8b4924cffb5194a4a68da8b8b9011c57d15350ba0495aa6daf3

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_anthropic-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_anthropic-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 d14e3ad29f59f1ba6b2e8953ec3a427104b7f274f3d43b2b7623849458d47215
MD5 6436eb1f1c9c6e1c589e38fc778738ea
BLAKE2b-256 992116aba8cc34059aac305bf24f4255a05949b686c5c7bd5a8460fb7ad4919e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page