Skip to main content

OpenInference Anthropic Instrumentation

Project description

OpenInference Anthropic Instrumentation

Python autoinstrumentation library for the Anthropic package

This package implements the following Anthropic clients:

  • Messages
  • Completions
  • AsyncMessages
  • AsyncCompletions

These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as Arize phoenix.

Installation

pip install openinference-instrumentation-anthropic

Quickstart

Through your terminal, install required packages.

pip install openinference-instrumentation-anthropic anthropic arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

You can start Phoenix with the following terminal command:

python -m phoenix.server.main serve

By default, Phoenix listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

Try the following code in a Python file.

  1. Set up AnthropicInstrumentor to trace your application and sends the traces to Phoenix.
  2. Then, set your Anthropic API key as an environment variable.
  3. Lastly, create a Anthropic client, make a request, then go see your results in Phoenix at http://localhost:6006!
import os
from anthropic import Anthropic
from openinference.instrumentation.anthropic import AnthropicInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

# Configure AnthropicInstrumentor with Phoenix endpoint
endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))

AnthropicInstrumentor().instrument(tracer_provider=tracer_provider)

os.environ["ANTHROPIC_API_KEY"] = "YOUR_KEY_HERE"

client = Anthropic()

response = client.messages.create(
    max_tokens=1024,
    messages=[
        {
            "role": "user",
            "content": "Tell me about the history of Iceland!",
        }
    ],
    model="claude-3-opus-20240229",
)
print(response)

Now, on the Phoenix UI on your browser, you should see the traces from your Anthropic application. Click on a trace, then the "Attributes" tab will provide you with in-depth information regarding execution!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_anthropic-0.1.9.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_anthropic-0.1.9.tar.gz
Algorithm Hash digest
SHA256 313b10648343770ea678ecb8d6c3faa203b6b7c4a839edf4e3a08674f50dd752
MD5 b6a2553e49201909f197acef3e3bea18
BLAKE2b-256 b6e78f579767e0ec1750f34364a936a1934d1906e0da0156211c4068013e12f3

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_anthropic-0.1.9-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_anthropic-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 16f0ca3da40267f559bf2140c7ac5b6cf96fe1e59def57a2d14c46310105be2e
MD5 0c95a527ff80e05089bb078924d8d826
BLAKE2b-256 7e424c70f9fcd269b76562331e439ea06ed2e9dbc1018253586770681c8ee52c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page