Skip to main content

OpenInference DSPy Instrumentation

Project description

OpenInference DSPy Instrumentation

pypi

Python auto-instrumentation library for DSPy.

These traces are fully OpenTelemetry-compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix.

Installation

pip install openinference-instrumentation-dspy

Quickstart

This quickstart shows you how to instrument your DSPy application. It is adapted from the DSPy quickstart.

Install required packages.

pip install openinference-instrumentation-dspy dspy-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

python -m phoenix.server.main serve

Set up DSPyInstrumentor to trace your DSPy application and sends the traces to Phoenix at the endpoint defined below.

from openinference.instrumentation.dspy import DSPyInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
trace_api.set_tracer_provider(tracer_provider)
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))

DSPyInstrumentor().instrument()

Import dspy and configure your language model.

import dspy
from dspy.datasets.gsm8k import GSM8K, gsm8k_metric

turbo = dspy.OpenAI(model='gpt-3.5-turbo-instruct', max_tokens=250)
dspy.settings.configure(lm=turbo)
gms8k = GSM8K()
gsm8k_trainset, gsm8k_devset = gms8k.train[:10], gms8k.dev[:10]

Define a custom program that utilizes the ChainOfThought module to perform step-by-step reasoning to generate answers.

class CoT(dspy.Module):
    def __init__(self):
        super().__init__()
        self.prog = dspy.ChainOfThought("question -> answer")
    
    def forward(self, question):
        return self.prog(question=question)

Optimize your program using the BootstrapFewShotWithRandomSearch teleprompter.

from dspy.teleprompt import BootstrapFewShot

config = dict(max_bootstrapped_demos=4, max_labeled_demos=4)
teleprompter = BootstrapFewShot(metric=gsm8k_metric, **config)
optimized_cot = teleprompter.compile(CoT(), trainset=gsm8k_trainset, valset=gsm8k_devset)

Evaluate performance on the dev dataset.

from dspy.evaluate import Evaluate

evaluate = Evaluate(devset=gsm8k_devset, metric=gsm8k_metric, num_threads=4, display_progress=True, display_table=0)
evaluate(optimized_cot)

Visit the Phoenix app at http://localhost:6006 to see your traces.

More Info

More details about tracing with OpenInference and Phoenix can be found in the Phoenix docs.

For AI/ML observability solutions in production, including a cloud-based trace collector, visit Arize.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_dspy-0.1.10.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_dspy-0.1.10.tar.gz
Algorithm Hash digest
SHA256 e57a876d8d1615320c091f199d9567824d2daa09770405ab830f1fe8e9d9b8c7
MD5 895a24979530848ac882987d635d637e
BLAKE2b-256 643deb68c697756e00b12094a7d9ba3996e5e71544120d02d975b9b2df03020e

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_dspy-0.1.10-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_dspy-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 31e46826da54e91654bebcee12b32c27226d78ead21331a611b0ecd53b5e5fca
MD5 d4b2af5f44488a448abb7220c324653d
BLAKE2b-256 8b9e2e69c662dd3dbb44a2adeb712abd66d613e24bcfc5b1affa2055fe160d38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page