Skip to main content

OpenInference Guardrails Instrumentation

Project description

OpenInference guardrails Instrumentation

pypi

Python auto-instrumentation library for LLM applications implemented with Guardrails

Guards are fully OpenTelemetry-compatible and can be sent to an OpenTelemetry collector for monitoring, such as arize-phoenix.

Installation

pip install openinference-instrumentation-guardrails

Quickstart

This quickstart shows you how to instrument your guardrailed LLM application

Install required packages.

pip install openinference-instrumentation-guardrails guardrails-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

python -m phoenix.server.main serve

Install the TwoWords validator that's used in the Guard.

guardrails hub install hub://guardrails/two_words

Set up GuardrailsInstrumentor to trace your guardrails application and sends the traces to Phoenix at the endpoint defined below.

from openinference.instrumentation.guardrails import GuardrailsInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
import os

os.environ["OPENAI_API_KEY"] = "YOUR_KEY_HERE"

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
trace_api.set_tracer_provider(tracer_provider)

GuardrailsInstrumentor().instrument()

Set up a simple example of LLM call using a Guard

from guardrails import Guard
from guardrails.hub import TwoWords
import openai

guard = Guard().use(
    TwoWords(),
)

response = guard(
    llm_api=openai.chat.completions.create,
    prompt="What is another name for America?",
    model="gpt-3.5-turbo",
    max_tokens=1024,
)

print(response)

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

File details

Details for the file openinference_instrumentation_guardrails-0.1.10.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_guardrails-0.1.10.tar.gz
Algorithm Hash digest
SHA256 731cddcae4131884ebd72b7e3accb77b7012a3084fcb1318c0e4b6c8068b536b
MD5 8fdbda8be25aa8eac383e033300a4d2e
BLAKE2b-256 849be7a2fdfd62598b2161b11873f108101204fa4eb29cb511a25b67376f7c2b

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_guardrails-0.1.10-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_guardrails-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 cba7753d6901418f666c9dba73250b4a547d664c3124b314e4b3a3f80f7ecf69
MD5 03c6fda54ac639abcf8c0675c1d490cb
BLAKE2b-256 ae1c2732277c68fdf393826be885fcbc61e583d4ca46045ad1c648fc71b6127f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page