Skip to main content

OpenInference Guardrails Instrumentation

Project description

OpenInference guardrails Instrumentation

pypi

Python auto-instrumentation library for LLM applications implemented with Guardrails

Guards are fully OpenTelemetry-compatible and can be sent to an OpenTelemetry collector for monitoring, such as arize-phoenix.

Installation

pip install openinference-instrumentation-guardrails

Quickstart

This quickstart shows you how to instrument your guardrailed LLM application

Install required packages.

pip install openinference-instrumentation-guardrails guardrails-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

python -m phoenix.server.main serve

Install the TwoWords validator that's used in the Guard.

guardrails hub install hub://guardrails/two_words

Set up GuardrailsInstrumentor to trace your guardrails application and sends the traces to Phoenix at the endpoint defined below.

from openinference.instrumentation.guardrails import GuardrailsInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
import os

os.environ["OPENAI_API_KEY"] = "YOUR_KEY_HERE"

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
trace_api.set_tracer_provider(tracer_provider)

GuardrailsInstrumentor().instrument()

Set up a simple example of LLM call using a Guard

from guardrails import Guard
from guardrails.hub import TwoWords
import openai

guard = Guard().use(
    TwoWords(),
)

response = guard(
    llm_api=openai.chat.completions.create,
    prompt="What is another name for America?",
    model="gpt-3.5-turbo",
    max_tokens=1024,
)

print(response)

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

File details

Details for the file openinference_instrumentation_guardrails-0.1.4.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_guardrails-0.1.4.tar.gz
Algorithm Hash digest
SHA256 74fa267cf5dc7c7a373a6184f483b4d4b68873d9fb169cc3f0d76f87e8654a0c
MD5 9a847aaa796f604a9ba467de75c3133c
BLAKE2b-256 c6d8253a10f99afebd9a0fe83b7e3d4c1cc958a78f0b2641b50de31fb6a00ebc

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_guardrails-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_guardrails-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 86ed357b5d8a97af4e47e61fbbd25fff55da9d4d2fa11c4b4a0c25f3ba572d80
MD5 e8eec7303d57fac41555e9f2e03a5c35
BLAKE2b-256 9bf58ccba1bf54b8e4c3d2722664b5033a3aa89c12dc59c721a4befc39514173

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page