Skip to main content

OpenInference Guardrails Instrumentation

Project description

OpenInference guardrails Instrumentation

pypi

Python auto-instrumentation library for LLM applications implemented with Guardrails

Guards are fully OpenTelemetry-compatible and can be sent to an OpenTelemetry collector for monitoring, such as arize-phoenix.

Installation

pip install openinference-instrumentation-guardrails

Quickstart

This quickstart shows you how to instrument your guardrailed LLM application

Install required packages.

pip install openinference-instrumentation-guardrails guardrails-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

python -m phoenix.server.main serve

Install the TwoWords validator that's used in the Guard.

guardrails hub install hub://guardrails/two_words

Set up GuardrailsInstrumentor to trace your guardrails application and sends the traces to Phoenix at the endpoint defined below.

from openinference.instrumentation.guardrails import GuardrailsInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
import os

os.environ["OPENAI_API_KEY"] = "YOUR_KEY_HERE"

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
trace_api.set_tracer_provider(tracer_provider)

GuardrailsInstrumentor().instrument()

Set up a simple example of LLM call using a Guard

from guardrails import Guard
from guardrails.hub import TwoWords
import openai

guard = Guard().use(
    TwoWords(),
)

response = guard(
    llm_api=openai.chat.completions.create,
    prompt="What is another name for America?",
    model="gpt-3.5-turbo",
    max_tokens=1024,
)

print(response)

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

File details

Details for the file openinference_instrumentation_guardrails-0.1.5.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_guardrails-0.1.5.tar.gz
Algorithm Hash digest
SHA256 ebe7650fc5fb0da767b190e9cded69a878e9cd685f6fb26cbd69fc86cc6ca7e7
MD5 5cc09d50ca5c890739d018717dfc0a4a
BLAKE2b-256 4849a55b9514feeb298c2b1a892b475f037529348d72e23a8cb38999d63cbc1b

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_guardrails-0.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_guardrails-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 5d2c26539d75d6371b46e23bb6189e21038be7a489b4265a16bb64a9e137e67c
MD5 6d16aab559c381096f72c0990a781672
BLAKE2b-256 08bbdad9a7f72b09ab82e9f6a068f2ae7b2b230503b0dec342b213b974ca0972

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page