Skip to main content

OpenInference Guardrails Instrumentation

Project description

OpenInference guardrails Instrumentation

pypi

Python auto-instrumentation library for LLM applications implemented with Guardrails

Guards are fully OpenTelemetry-compatible and can be sent to an OpenTelemetry collector for monitoring, such as arize-phoenix.

Installation

pip install openinference-instrumentation-guardrails

Quickstart

This quickstart shows you how to instrument your guardrailed LLM application

Install required packages.

pip install openinference-instrumentation-guardrails guardrails-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

python -m phoenix.server.main serve

Install the TwoWords validator that's used in the Guard.

guardrails hub install hub://guardrails/two_words

Set up GuardrailsInstrumentor to trace your guardrails application and sends the traces to Phoenix at the endpoint defined below.

from openinference.instrumentation.guardrails import GuardrailsInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
import os

os.environ["OPENAI_API_KEY"] = "YOUR_KEY_HERE"

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
trace_api.set_tracer_provider(tracer_provider)

GuardrailsInstrumentor().instrument()

Set up a simple example of LLM call using a Guard

from guardrails import Guard
from guardrails.hub import TwoWords
import openai

guard = Guard().use(
    TwoWords(),
)

response = guard(
    llm_api=openai.chat.completions.create,
    prompt="What is another name for America?",
    model="gpt-3.5-turbo",
    max_tokens=1024,
)

print(response)

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

File details

Details for the file openinference_instrumentation_guardrails-0.1.6.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_guardrails-0.1.6.tar.gz
Algorithm Hash digest
SHA256 039dbfe81f8ff3a1237971148ea05e80177aa733dcd1dedde585ab26ba910dd4
MD5 bbeaf1b81a0870acdc134f72639c0acc
BLAKE2b-256 8593942576d747558bcaa53f6f543aa233cf7204f83996be78b24f5a08b01c42

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_guardrails-0.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_guardrails-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 6811ccd72bf105f9902e7ac142ea590e2816436561d4d530e54ae85c59af3fc6
MD5 a76e88fc2ea047054ccb698d950b2622
BLAKE2b-256 0a9f16770bc61b9eb2de6c710f32aced3eb8f8313256f27f3340eeb019930d5f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page