Skip to main content

OpenInference Guardrails Instrumentation

Project description

OpenInference guardrails Instrumentation

pypi

Python auto-instrumentation library for LLM applications implemented with Guardrails

Guards are fully OpenTelemetry-compatible and can be sent to an OpenTelemetry collector for monitoring, such as arize-phoenix.

Installation

pip install openinference-instrumentation-guardrails

Quickstart

This quickstart shows you how to instrument your guardrailed LLM application

Install required packages.

pip install openinference-instrumentation-guardrails guardrails-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

python -m phoenix.server.main serve

Install the TwoWords validator that's used in the Guard.

guardrails hub install hub://guardrails/two_words

Set up GuardrailsInstrumentor to trace your guardrails application and sends the traces to Phoenix at the endpoint defined below.

from openinference.instrumentation.guardrails import GuardrailsInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
import os

os.environ["OPENAI_API_KEY"] = "YOUR_KEY_HERE"

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
trace_api.set_tracer_provider(tracer_provider)

GuardrailsInstrumentor().instrument()

Set up a simple example of LLM call using a Guard

from guardrails import Guard
from guardrails.hub import TwoWords
import openai

guard = Guard().use(
    TwoWords(),
)

response = guard(
    llm_api=openai.chat.completions.create,
    prompt="What is another name for America?",
    model="gpt-3.5-turbo",
    max_tokens=1024,
)

print(response)

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

File details

Details for the file openinference_instrumentation_guardrails-0.1.8.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_guardrails-0.1.8.tar.gz
Algorithm Hash digest
SHA256 83fe8bbe68872ad0655ff704b981f36c7cea91bbd8207fb1e7135bf2ae3add39
MD5 e99b4b59b9d3254200fd5c5f5711cc35
BLAKE2b-256 91bb36a0a0a6970d24af0e7c72e9ec1d85d1aa18a6fe376346b96f460b8f6908

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_guardrails-0.1.8-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_guardrails-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 79d17f533aa806699272f41edb5cb0a5079c1dba59679732ea664a27d8430b1d
MD5 cfbdb3eb824c68c85ec870eec8088e0a
BLAKE2b-256 ab7adc5c43e7f045fc3d544335d8363fbf2bf7ef3b67e229373537186d330fc5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page