Skip to main content

OpenInference LangChain Instrumentation

Project description

OpenInference LangChain Instrumentation

Python auto-instrumentation library for LangChain.

These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix.

pypi

Installation

pip install openinference-instrumentation-langchain

Quickstart

Install packages needed for this demonstration.

pip install openinference-instrumentation-langchain langchain arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the Phoenix app in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address.

The Phoenix app does not send data over the internet. It only operates locally on your machine.

python -m phoenix.server.main serve

The following Python code sets up the LangChainInstrumentor to trace langchain and send the traces to Phoenix at the endpoint shown below.

from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from openinference.instrumentation.langchain import LangChainInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
trace_api.set_tracer_provider(tracer_provider)
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))

LangChainInstrumentor().instrument()

To demonstrate langchain tracing, we'll make a simple chain to tell a joke. First, configure your OpenAI credentials.

import os

os.environ["OPENAI_API_KEY"] = "<your openai key>"

Now we can create a chain and run it.

prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(input_variables=["adjective"], template=prompt_template)
llm = LLMChain(llm=OpenAI(), prompt=prompt, metadata={"category": "jokes"})
completion = llm.predict(adjective="funny", metadata={"variant": "funny"})
print(completion)

Visit the Phoenix app at http://localhost:6006 to see the traces.

More Info

More details about tracing with OpenInference and Phoenix can be found in the Phoenix documentation.

For AI/ML observability solutions in production, including a cloud-based trace collector, visit Arize.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_langchain-0.1.16.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_langchain-0.1.16.tar.gz
Algorithm Hash digest
SHA256 b4d8cba023ad9d68c6738ecc6fb6c099a6ba6721399084d027a6466db61d7319
MD5 f731aa23218c3a4068fdad9023fdea7a
BLAKE2b-256 f2e3be12cfadc10b6ed8d755b2caa3902942cf7f6ecd1ddb9deb51052be96af3

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_langchain-0.1.16-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_langchain-0.1.16-py3-none-any.whl
Algorithm Hash digest
SHA256 8dfe7f94cd0a69cc1fe7f69462f3510f21f018cb7591382bf27190397ebd8725
MD5 e40f37fd5ce8e205d57b3063b482ea82
BLAKE2b-256 eabfdb7a79329b053811e2f9759a40b1f0fa9f83b25f691f3b06abbba5a4eb41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page