Skip to main content

OpenInference LangChain Instrumentation

Project description

OpenInference LangChain Instrumentation

Python auto-instrumentation library for LangChain.

These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix.

pypi

Installation

pip install openinference-instrumentation-langchain

Quickstart

Install packages needed for this demonstration.

pip install openinference-instrumentation-langchain langchain arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the Phoenix app in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address.

The Phoenix app does not send data over the internet. It only operates locally on your machine.

python -m phoenix.server.main serve

The following Python code sets up the LangChainInstrumentor to trace langchain and send the traces to Phoenix at the endpoint shown below.

from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from openinference.instrumentation.langchain import LangChainInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
trace_api.set_tracer_provider(tracer_provider)
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))

LangChainInstrumentor().instrument()

To demonstrate langchain tracing, we'll make a simple chain to tell a joke. First, configure your OpenAI credentials.

import os

os.environ["OPENAI_API_KEY"] = "<your openai key>"

Now we can create a chain and run it.

prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(input_variables=["adjective"], template=prompt_template)
llm = LLMChain(llm=OpenAI(), prompt=prompt, metadata={"category": "jokes"})
completion = llm.predict(adjective="funny", metadata={"variant": "funny"})
print(completion)

Visit the Phoenix app at http://localhost:6006 to see the traces.

More Info

More details about tracing with OpenInference and Phoenix can be found in the Phoenix documentation.

For AI/ML observability solutions in production, including a cloud-based trace collector, visit Arize.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_langchain-0.1.18.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_langchain-0.1.18.tar.gz
Algorithm Hash digest
SHA256 8349a1e250e86bbaabbbe8a393e904773d24cb2dddbd1074527a00b44316adb1
MD5 7ed346866d2d3f51b0a9b367250cbedd
BLAKE2b-256 aaf691ab5d6d4e9869f31a7ac82db56960b1e83052a9d96411174b10d307ae62

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_langchain-0.1.18-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_langchain-0.1.18-py3-none-any.whl
Algorithm Hash digest
SHA256 a2edf86f4ae46cdbf345c589dfade0a4d603d99506d665cc283e69483f7c3469
MD5 c30835a786c1ae1c79aeb727cf423daf
BLAKE2b-256 b2e52dfbce674bf47a47a847f72d8d47158adb069e6c6df6feb65fafe3daad23

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page