Skip to main content

OpenInference LangChain Instrumentation

Reason this release was yanked:

Rename of common instrumentation config classes

Project description

OpenInference LangChain Instrumentation

Python auto-instrumentation library for LangChain.

These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix.

pypi

Installation

pip install openinference-instrumentation-langchain

Quickstart

Install packages needed for this demonstration.

pip install openinference-instrumentation-langchain langchain arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the Phoenix app in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address.

The Phoenix app does not send data over the internet. It only operates locally on your machine.

python -m phoenix.server.main serve

The following Python code sets up the LangChainInstrumentor to trace langchain and send the traces to Phoenix at the endpoint shown below.

from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from openinference.instrumentation.langchain import LangChainInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
trace_api.set_tracer_provider(tracer_provider)
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))

LangChainInstrumentor().instrument()

To demonstrate langchain tracing, we'll make a simple chain to tell a joke. First, configure your OpenAI credentials.

import os

os.environ["OPENAI_API_KEY"] = "<your openai key>"

Now we can create a chain and run it.

prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(input_variables=["adjective"], template=prompt_template)
llm = LLMChain(llm=OpenAI(), prompt=prompt, metadata={"category": "jokes"})
completion = llm.predict(adjective="funny", metadata={"variant": "funny"})
print(completion)

Visit the Phoenix app at http://localhost:6006 to see the traces.

More Info

More details about tracing with OpenInference and Phoenix can be found in the Phoenix documentation.

For AI/ML observability solutions in production, including a cloud-based trace collector, visit Arize.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_langchain-0.1.24.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_langchain-0.1.24.tar.gz
Algorithm Hash digest
SHA256 9355e4a6e3894e9481a73e688dfd2794bcfca5e4d7295d330a1c3fa936f08828
MD5 ad8cf60e7f796a677ec40f71a4c4edd6
BLAKE2b-256 d27e5e0c4228564c013eb2fd1d9a002385aabd7f84815cfd81803151cd4bbc4d

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_langchain-0.1.24-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_langchain-0.1.24-py3-none-any.whl
Algorithm Hash digest
SHA256 fe31e7d56ae5b06ae264882ae7993cf053d10a13f7fb26ce013ec5ed98fcae37
MD5 d0f1504961bde8b1e566771a806e948d
BLAKE2b-256 7b3b569764772baef3c53e6549c0ab79b0dad964288416a334d2f5a983973ac8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page