Skip to main content

OpenInference LangChain Instrumentation

Project description

OpenInference LangChain Instrumentation

Python auto-instrumentation library for LangChain.

These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix.

pypi

Installation

pip install openinference-instrumentation-langchain

Quickstart

Install packages needed for this demonstration.

pip install openinference-instrumentation-langchain langchain arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the Phoenix app in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address.

The Phoenix app does not send data over the internet. It only operates locally on your machine.

python -m phoenix.server.main serve

The following Python code sets up the LangChainInstrumentor to trace langchain and send the traces to Phoenix at the endpoint shown below.

from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from openinference.instrumentation.langchain import LangChainInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
trace_api.set_tracer_provider(tracer_provider)
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))

LangChainInstrumentor().instrument()

To demonstrate langchain tracing, we'll make a simple chain to tell a joke. First, configure your OpenAI credentials.

import os

os.environ["OPENAI_API_KEY"] = "<your openai key>"

Now we can create a chain and run it.

prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(input_variables=["adjective"], template=prompt_template)
llm = LLMChain(llm=OpenAI(), prompt=prompt, metadata={"category": "jokes"})
completion = llm.predict(adjective="funny", metadata={"variant": "funny"})
print(completion)

Visit the Phoenix app at http://localhost:6006 to see the traces.

More Info

More details about tracing with OpenInference and Phoenix can be found in the Phoenix documentation.

For AI/ML observability solutions in production, including a cloud-based trace collector, visit Arize.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_langchain-0.1.26.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_langchain-0.1.26.tar.gz
Algorithm Hash digest
SHA256 e73fdc9b09fc4127610f0616641088902cb9873ddae265b34efb86793b17b5f6
MD5 f43537e94358127297458622a556262e
BLAKE2b-256 085f6f05470846de8a476d770370e19377c66d80eefe20578a50d6db8132f077

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_langchain-0.1.26-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_langchain-0.1.26-py3-none-any.whl
Algorithm Hash digest
SHA256 a40f71286a8bedf20253fce7c83a078f81b071ec0875ac1b8fcafa30dc038896
MD5 00cc13950811f5a650c8c2038e4110fc
BLAKE2b-256 13cb9bdd38286f2e81ebf590396a993ad87138ee597e116fa55f85290fe65dd2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page