Skip to main content

OpenInference Mistral AI Instrumentation

Project description

OpenInference Mistral AI Instrumentation

PyPI Version

Python autoinstrumentation library for MistralAI's Python SDK.

The traces emitted by this instrumentation are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix

Installation

pip install openinference-instrumentation-mistralai

Quickstart

In this example we will instrument a small program that uses the MistralAI chat completions API and observe the traces via arize-phoenix.

Install packages.

pip install openinference-instrumentation-mistralai mistralai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the phoenix server so that it is ready to collect traces. The Phoenix server runs entirely on your machine and does not send data over the internet.

python -m phoenix.server.main serve

In a python file, setup the MistralAIInstrumentor and configure the tracer to send traces to Phoenix.

from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from openinference.instrumentation.mistralai import MistralAIInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
# Optionally, you can also print the spans to the console.
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))
trace_api.set_tracer_provider(tracer_provider)

MistralAIInstrumentor().instrument()


if __name__ == "__main__":
    client = MistralClient()
    response = client.chat(
        model="mistral-large-latest",
        messages=[
            ChatMessage(
                content="Who won the World Cup in 2018?",
                role="user",
            )
        ],
    )
    print(response.choices[0].message.content)

Since we are using MistralAI, we must set the MISTRAL_API_KEY environment variable to authenticate with the MistralAI API.

export MISTRAL_API_KEY=[your_key_here]

Now simply run the python file and observe the traces in Phoenix.

python your_file.py

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_mistralai-0.0.10.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_mistralai-0.0.10.tar.gz
Algorithm Hash digest
SHA256 1d03096165ee67c4e89861c82082578e38704845e3fa18e56fb3655a389cbed6
MD5 1dbb741b1f59131820928f2dd4ec40db
BLAKE2b-256 0eebf252269cd3a444950a3d5e54b5b3f674922d335e422747444dce15d5ef76

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_mistralai-0.0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_mistralai-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 32868bef5c94cf7c8c7292efb90c5d4d9e0d218e4be638726e75f35bd2b2cf6a
MD5 d07a82c40e51b562c76d6db0c3700d52
BLAKE2b-256 392f464db4419f8d90ad0636cbe000b644cf32e9a8b6055fdd0fe0337bf5c2b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page