Skip to main content

OpenInference Mistral AI Instrumentation

Project description

OpenInference Mistral AI Instrumentation

PyPI Version

Python autoinstrumentation library for MistralAI's Python SDK.

The traces emitted by this instrumentation are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix

Installation

pip install openinference-instrumentation-mistralai

Quickstart

In this example we will instrument a small program that uses the MistralAI chat completions API and observe the traces via arize-phoenix.

Install packages.

pip install openinference-instrumentation-mistralai mistralai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the phoenix server so that it is ready to collect traces. The Phoenix server runs entirely on your machine and does not send data over the internet.

python -m phoenix.server.main serve

In a python file, setup the MistralAIInstrumentor and configure the tracer to send traces to Phoenix.

from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from openinference.instrumentation.mistralai import MistralAIInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
# Optionally, you can also print the spans to the console.
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))
trace_api.set_tracer_provider(tracer_provider)

MistralAIInstrumentor().instrument()


if __name__ == "__main__":
    client = MistralClient()
    response = client.chat(
        model="mistral-large-latest",
        messages=[
            ChatMessage(
                content="Who won the World Cup in 2018?",
                role="user",
            )
        ],
    )
    print(response.choices[0].message.content)

Since we are using MistralAI, we must set the MISTRAL_API_KEY environment variable to authenticate with the MistralAI API.

export MISTRAL_API_KEY=[your_key_here]

Now simply run the python file and observe the traces in Phoenix.

python your_file.py

More Info

Fore details about tracing with OpenInference and Phoenix, consult the Phoenix documentation.

For AI/ML observability solutions in production, check out the docs on Arize.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_mistralai-0.0.9.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_mistralai-0.0.9.tar.gz
Algorithm Hash digest
SHA256 d55382cbd3fcea6b87918ecaffaeaad81d7688ce765c2ccaab776aaef6ac69fb
MD5 eef11ca42495eda93a8d3ed76cbfa179
BLAKE2b-256 bbdd42d84f94ab6f0fc95546117fb3861c13b9e615777c5fec18bd31e4ac9bca

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_mistralai-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_mistralai-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 34b3369f4a65d55d7e215379448089d58acf3e5de8daec9f9e4835f5532d0343
MD5 13d35f837852a2090bd529f648f7c9c5
BLAKE2b-256 635ff2b875e7dbf265492103a0855b04a453a5f55d291d09e7642d9e1f31eafc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page