Skip to main content

OpenInference Mistral AI Instrumentation

Project description

OpenInference Mistral AI Instrumentation

PyPI Version

Python autoinstrumentation library for MistralAI's Python SDK.

The traces emitted by this instrumentation are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix

Installation

pip install openinference-instrumentation-mistralai

Quickstart

In this example we will instrument a small program that uses the MistralAI chat completions API and observe the traces via arize-phoenix.

Install packages.

pip install openinference-instrumentation-mistralai mistralai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the phoenix server so that it is ready to collect traces. The Phoenix server runs entirely on your machine and does not send data over the internet.

python -m phoenix.server.main serve

In a python file, setup the MistralAIInstrumentor and configure the tracer to send traces to Phoenix.

from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from openinference.instrumentation.mistralai import MistralAIInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
# Optionally, you can also print the spans to the console.
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))
trace_api.set_tracer_provider(tracer_provider)

MistralAIInstrumentor().instrument()


if __name__ == "__main__":
    client = MistralClient()
    response = client.chat(
        model="mistral-large-latest",
        messages=[
            ChatMessage(
                content="Who won the World Cup in 2018?",
                role="user",
            )
        ],
    )
    print(response.choices[0].message.content)

Since we are using MistralAI, we must set the MISTRAL_API_KEY environment variable to authenticate with the MistralAI API.

export MISTRAL_API_KEY=[your_key_here]

Now simply run the python file and observe the traces in Phoenix.

python your_file.py

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_mistralai-1.0.0.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_mistralai-1.0.0.tar.gz
Algorithm Hash digest
SHA256 926aa4095093dda3d59de1c800da9793a691c2542fcec1f01ca19e6e208a56c2
MD5 248d50d3bc29fbe4434bc02dfbb0f46e
BLAKE2b-256 023daaf5a6b07fa67303c98824d28a705a61868e730405815564dea9f634a5b4

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_mistralai-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_mistralai-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1e51fccb5b08585d7b35a67da07e68bf9b77c06df208131ac550aace8ec11df0
MD5 a4ff8d255cb2364f8e52f20aff63f3db
BLAKE2b-256 708eec5cb1bd934b628d17e608cbee333f10f687f8d5245ac6652e09bb21c902

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page