Skip to main content

OpenInference Mistral AI Instrumentation

Project description

OpenInference Mistral AI Instrumentation

PyPI Version

Python autoinstrumentation library for MistralAI's Python SDK.

The traces emitted by this instrumentation are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix

Installation

pip install openinference-instrumentation-mistralai

Quickstart

In this example we will instrument a small program that uses the MistralAI chat completions API and observe the traces via arize-phoenix.

Install packages.

pip install openinference-instrumentation-mistralai mistralai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the phoenix server so that it is ready to collect traces. The Phoenix server runs entirely on your machine and does not send data over the internet.

python -m phoenix.server.main serve

In a python file, setup the MistralAIInstrumentor and configure the tracer to send traces to Phoenix.

from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from openinference.instrumentation.mistralai import MistralAIInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
# Optionally, you can also print the spans to the console.
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))
trace_api.set_tracer_provider(tracer_provider)

MistralAIInstrumentor().instrument()


if __name__ == "__main__":
    client = MistralClient()
    response = client.chat(
        model="mistral-large-latest",
        messages=[
            ChatMessage(
                content="Who won the World Cup in 2018?",
                role="user",
            )
        ],
    )
    print(response.choices[0].message.content)

Since we are using MistralAI, we must set the MISTRAL_API_KEY environment variable to authenticate with the MistralAI API.

export MISTRAL_API_KEY=[your_key_here]

Now simply run the python file and observe the traces in Phoenix.

python your_file.py

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_mistralai-1.1.0.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_mistralai-1.1.0.tar.gz
Algorithm Hash digest
SHA256 f35ac8c94571ef0c7514529c31256f521ea078cc815ac2875fa91f6ae88878bf
MD5 1c9389e61c8d4061e0e7cdcd74c3f2c6
BLAKE2b-256 4bc2bca1bc0678423dfc1619bd5146c7e4d23351b610c58967e9f52dfeeab3e5

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_mistralai-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_mistralai-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 aeb6141fc65552a0d0754fc09950aeb55a212bf1b177279db61f8220802f6d3f
MD5 d9030353d6c3a3920ab50e6a311fe67a
BLAKE2b-256 cacb6448749821f2c224cbbcb2c5e48c56e9b6450a18682109dee14bd656c339

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page