Skip to main content

OpenInference OpenAI Instrumentation

Project description

OpenInference OpenAI Instrumentation

pypi

Python auto-instrumentation library for OpenAI's python SDK.

The traces emitted by this instrumentation are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix

Installation

pip install openinference-instrumentation-openai

Quickstart

In this example we will instrument a small program that uses OpenAI and observe the traces via arize-phoenix.

Install packages.

pip install openinference-instrumentation-openai "openai>=1.26" arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the phoenix server so that it is ready to collect traces. The Phoenix server runs entirely on your machine and does not send data over the internet.

python -m phoenix.server.main serve

In a python file, setup the OpenAIInstrumentor and configure the tracer to send traces to Phoenix.

import openai
from openinference.instrumentation.openai import OpenAIInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
# Optionally, you can also print the spans to the console.
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))

OpenAIInstrumentor().instrument(tracer_provider=tracer_provider)


if __name__ == "__main__":
    client = openai.OpenAI()
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": "Write a haiku."}],
        max_tokens=20,
        stream=True,
        stream_options={"include_usage": True},
    )
    for chunk in response:
        if chunk.choices and (content := chunk.choices[0].delta.content):
            print(content, end="")

Since we are using OpenAI, we must set the OPENAI_API_KEY environment variable to authenticate with the OpenAI API.

export OPENAI_API_KEY=your-api-key

Now simply run the python file and observe the traces in Phoenix.

python your_file.py

FAQ

Q: How to get token counts when streaming?

A: To get token counts when streaming, install openai>=1.26 and set stream_options={"include_usage": True} when calling create. See the example shown above. For more info, see here.

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_openai-0.1.17.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_openai-0.1.17.tar.gz
Algorithm Hash digest
SHA256 08eb725c6b4867f572ac7e7d6a6f3f656ba62a5c7617f14c31dd7c26ca6ea9a6
MD5 b4a967dc39b7c90d2dd970600f1b591c
BLAKE2b-256 796b6d64c4e1fe03b91d33c8262405de657dffd251cbf68aa49bdf7863bc6875

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_openai-0.1.17-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_openai-0.1.17-py3-none-any.whl
Algorithm Hash digest
SHA256 2f24ca30fb8ff4c2d6aa00275ad86e6f0f48a40f5d914215625e018cc98d96ca
MD5 8bec1244f3664d54f27b3f53467c216a
BLAKE2b-256 f2df9b5db150e69eb233d1cc05c27520741918a117b9edfcaaa13208a21ba2f0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page