Skip to main content

OpenInference OpenAI Instrumentation

Project description

OpenInference OpenAI Instrumentation

pypi

Python auto-instrumentation library for OpenAI's python SDK.

The traces emitted by this instrumentation are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix

Installation

pip install openinference-instrumentation-openai

Quickstart

In this example we will instrument a small program that uses OpenAI and observe the traces via arize-phoenix.

Install packages.

pip install openinference-instrumentation-openai "openai>=1.26" arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the phoenix server so that it is ready to collect traces. The Phoenix server runs entirely on your machine and does not send data over the internet.

python -m phoenix.server.main serve

In a python file, setup the OpenAIInstrumentor and configure the tracer to send traces to Phoenix.

import openai
from openinference.instrumentation.openai import OpenAIInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
# Optionally, you can also print the spans to the console.
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))

OpenAIInstrumentor().instrument(tracer_provider=tracer_provider)


if __name__ == "__main__":
    client = openai.OpenAI()
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": "Write a haiku."}],
        max_tokens=20,
        stream=True,
        stream_options={"include_usage": True},
    )
    for chunk in response:
        if chunk.choices and (content := chunk.choices[0].delta.content):
            print(content, end="")

Since we are using OpenAI, we must set the OPENAI_API_KEY environment variable to authenticate with the OpenAI API.

export OPENAI_API_KEY=your-api-key

Now simply run the python file and observe the traces in Phoenix.

python your_file.py

FAQ

Q: How to get token counts when streaming?

A: To get token counts when streaming, install openai>=1.26 and set stream_options={"include_usage": True} when calling create. See the example shown above. For more info, see here.

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_openai-0.1.15.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_openai-0.1.15.tar.gz
Algorithm Hash digest
SHA256 5d0ea3c01cee33091cacb4ae79989a16bad7a752e0d4b4261624e048e1881c02
MD5 e3049c9ae1d8944621a868154708242a
BLAKE2b-256 cc711a589a535410f5603868b769ff1766fd06ef7b7f77a653df0fedb188eaaf

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_openai-0.1.15-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_openai-0.1.15-py3-none-any.whl
Algorithm Hash digest
SHA256 dc97e51e3a31fb5e9b26a959c93e80e61fd5c814f741d58d5f34a3672a388f83
MD5 a4bff6229bb0668af73467e81dde74fe
BLAKE2b-256 124e12d2147f045dfd04519fd403ebb5d5d6d9de7ce02b3e505773d7370d0438

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page