Skip to main content

OpenInference PydanticAI Instrumentation

Project description

OpenInference PydanticAI

pypi

Python auto-instrumentation library for PydanticAI. These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as Arize Phoenix.

Installation

pip install openinference-instrumentation-pydantic-ai

Quickstart

This quickstart shows you how to instrument your PydanticAI agents.

Install required packages.

pip install pydantic-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

phoenix serve

Here's a simple example that demonstrates how to use PydanticAI with OpenInference instrumentation:

import os
from pydantic import BaseModel
from pydantic_ai import Agent
from pydantic_ai.models.instrumented import InstrumentationSettings
from pydantic_ai.models.openai import OpenAIModel
from pydantic_ai.providers.openai import OpenAIProvider
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from openinference.instrumentation.pydantic_ai import OpenInferenceSpanProcessor
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"

# Set up the tracer provider
tracer_provider = TracerProvider()
trace.set_tracer_provider(tracer_provider)

# Add the OpenInference span processor
endpoint = "http://127.0.0.1:6006/v1/traces"
exporter = OTLPSpanExporter(endpoint=endpoint)
tracer_provider.add_span_processor(OpenInferenceSpanProcessor())
tracer_provider.add_span_processor(SimpleSpanProcessor(exporter))


# Define your Pydantic model
class LocationModel(BaseModel):
    city: str
    country: str

instrumentation = InstrumentationSettings(version=2)

# Create and configure the agent
model = OpenAIModel("gpt-4", provider=OpenAIProvider())
agent = Agent(model, output_type=LocationModel, instrument=instrumentation)

# Run the agent
result = agent.run_sync("The windy city in the US of A.")
print(result)

This example:

  1. Sets up OpenTelemetry tracing with Phoenix
  2. Defines a simple Pydantic model for location data
  3. Creates a PydanticAI agent with instrumentation enabled
  4. Runs a query and gets structured output

The traces will be visible in the Phoenix UI at http://localhost:6006.

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

File details

Details for the file openinference_instrumentation_pydantic_ai-0.1.6.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_pydantic_ai-0.1.6.tar.gz
Algorithm Hash digest
SHA256 a6543cc348f9974f6036d08dbd11044c55e80602bb253ca6a6dfa5134591cebd
MD5 9dd18eebcdd9b1148cad408684232d7d
BLAKE2b-256 6cf2c5015bb028bf1b790a393cfbe16de16479472f6f6e12272225540150bee5

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_pydantic_ai-0.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_pydantic_ai-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 176cd0e4584f3ca25e9dafa2eeb9a5091f2ecd732c84356ab52a9686e9b8881a
MD5 836a4fdb6842e06abc9e8b762fdbdf4f
BLAKE2b-256 b5ebe894aff4e51f0e474a9c055feaa43db6d80ac295514519ccf61b11dd6e41

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page