Skip to main content

OpenInference PydanticAI Instrumentation

Project description

OpenInference PydanticAI

pypi

Python auto-instrumentation library for PydanticAI. These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as Arize Phoenix.

Installation

pip install openinference-instrumentation-pydantic-ai

Quickstart

This quickstart shows you how to instrument your PydanticAI agents.

Install required packages.

pip install pydantic-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

phoenix serve

Here's a simple example that demonstrates how to use PydanticAI with OpenInference instrumentation:

import os
from pydantic import BaseModel
from pydantic_ai import Agent
from pydantic_ai.models.instrumented import InstrumentationSettings
from pydantic_ai.models.openai import OpenAIModel
from pydantic_ai.providers.openai import OpenAIProvider
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from openinference.instrumentation.pydantic_ai import OpenInferenceSpanProcessor
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"

# Set up the tracer provider
tracer_provider = TracerProvider()
trace.set_tracer_provider(tracer_provider)

# Add the OpenInference span processor
endpoint = "http://127.0.0.1:6006/v1/traces"
exporter = OTLPSpanExporter(endpoint=endpoint)
tracer_provider.add_span_processor(OpenInferenceSpanProcessor())
tracer_provider.add_span_processor(SimpleSpanProcessor(exporter))


# Define your Pydantic model
class LocationModel(BaseModel):
    city: str
    country: str

instrumentation = InstrumentationSettings(version=2)

# Create and configure the agent
model = OpenAIModel("gpt-4", provider=OpenAIProvider())
agent = Agent(model, output_type=LocationModel, instrument=instrumentation)

# Run the agent
result = agent.run_sync("The windy city in the US of A.")
print(result)

This example:

  1. Sets up OpenTelemetry tracing with Phoenix
  2. Defines a simple Pydantic model for location data
  3. Creates a PydanticAI agent with instrumentation enabled
  4. Runs a query and gets structured output

The traces will be visible in the Phoenix UI at http://localhost:6006.

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

File details

Details for the file openinference_instrumentation_pydantic_ai-0.1.7.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_pydantic_ai-0.1.7.tar.gz
Algorithm Hash digest
SHA256 a4b827c92317057d72eb7f62bc6b747199d6ba0271f2a55c15260b7cbd2091e6
MD5 6a3e3cffbb86782cd6ab59be48f57fec
BLAKE2b-256 8804bed7f12f9064081336adc55408832fe26ad6cf60a7902ac655cc1c1864e9

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_pydantic_ai-0.1.7-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_pydantic_ai-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 f0bcddf4c7dd985ba7436d4c38f86100901f4d9b03d88a5d9346a52f16efe434
MD5 fced3d250f2805638b7318c06ff0052f
BLAKE2b-256 9829cdc97da487ab44e4d4a9aa27e9975106ddc4fb24d7d6a9e4f6ead5ad1e1b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page