Python interface to Hive for Openmetadata
Project description
PyHive
PyHive is a collection of Python DB-API and SQLAlchemy interfaces for Presto and Hive.
Usage
DB-API
from pyhive import presto # or import hive or import trino
cursor = presto.connect('localhost').cursor()
cursor.execute('SELECT * FROM my_awesome_data LIMIT 10')
print cursor.fetchone()
print cursor.fetchall()
DB-API (asynchronous)
from pyhive import hive
from TCLIService.ttypes import TOperationState
cursor = hive.connect('localhost').cursor()
cursor.execute('SELECT * FROM my_awesome_data LIMIT 10', async=True)
status = cursor.poll().operationState
while status in (TOperationState.INITIALIZED_STATE, TOperationState.RUNNING_STATE):
logs = cursor.fetch_logs()
for message in logs:
print message
# If needed, an asynchronous query can be cancelled at any time with:
# cursor.cancel()
status = cursor.poll().operationState
print cursor.fetchall()
In Python 3.7 async became a keyword; you can use async_ instead:
cursor.execute('SELECT * FROM my_awesome_data LIMIT 10', async_=True)
SQLAlchemy
First install this package to register it with SQLAlchemy (see setup.py).
from sqlalchemy import *
from sqlalchemy.engine import create_engine
from sqlalchemy.schema import *
# Presto
engine = create_engine('presto://localhost:8080/hive/default')
# Trino
engine = create_engine('trino://localhost:8080/hive/default')
# Hive
engine = create_engine('hive://localhost:10000/default')
logs = Table('my_awesome_data', MetaData(bind=engine), autoload=True)
print select([func.count('*')], from_obj=logs).scalar()
# Hive + HTTPS + LDAP or basic Auth
engine = create_engine('hive+https://username:password@localhost:10000/')
logs = Table('my_awesome_data', MetaData(bind=engine), autoload=True)
print select([func.count('*')], from_obj=logs).scalar()
Note: query generation functionality is not exhaustive or fully tested, but there should be no problem with raw SQL.
Passing session configuration
# DB-API
hive.connect('localhost', configuration={'hive.exec.reducers.max': '123'})
presto.connect('localhost', session_props={'query_max_run_time': '1234m'})
trino.connect('localhost', session_props={'query_max_run_time': '1234m'})
# SQLAlchemy
create_engine(
'presto://user@host:443/hive',
connect_args={'protocol': 'https',
'session_props': {'query_max_run_time': '1234m'}}
)
create_engine(
'trino://user@host:443/hive',
connect_args={'protocol': 'https',
'session_props': {'query_max_run_time': '1234m'}}
)
create_engine(
'hive://user@host:10000/database',
connect_args={'configuration': {'hive.exec.reducers.max': '123'}},
)
# SQLAlchemy with LDAP
create_engine(
'hive://user:password@host:10000/database',
connect_args={'auth': 'LDAP'},
)
Requirements
Install using
pip install 'pyhive[hive]' for the Hive interface and
pip install 'pyhive[presto]' for the Presto interface.
pip install 'pyhive[trino]' for the Trino interface
PyHive works with
Python 2.7 / Python 3
For Presto: Presto install
For Trino: Trino install
For Hive: HiveServer2 daemon
Changelog
Contributing
Please fill out the Dropbox Contributor License Agreement at https://opensource.dropbox.com/cla/ and note this in your pull request.
Changes must come with tests, with the exception of trivial things like fixing comments. See .travis.yml for the test environment setup.
Notes on project scope:
This project is intended to be a minimal Hive/Presto client that does that one thing and nothing else. Features that can be implemented on top of PyHive, such integration with your favorite data analysis library, are likely out of scope.
We prefer having a small number of generic features over a large number of specialized, inflexible features. For example, the Presto code takes an arbitrary requests_session argument for customizing HTTP calls, as opposed to having a separate parameter/branch for each requests option.
Testing
Run the following in an environment with Hive/Presto:
./scripts/make_test_tables.sh virtualenv --no-site-packages env source env/bin/activate pip install -e . pip install -r dev_requirements.txt py.test
WARNING: This drops/creates tables named one_row, one_row_complex, and many_rows, plus a database called pyhive_test_database.
Updating TCLIService
The TCLIService module is autogenerated using a TCLIService.thrift file. To update it, the generate.py file can be used: python generate.py <TCLIServiceURL>. When left blank, the version for Hive 2.3 will be downloaded.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file openmetadata-sqlalchemy-hive-0.2.0.tar.gz
.
File metadata
- Download URL: openmetadata-sqlalchemy-hive-0.2.0.tar.gz
- Upload date:
- Size: 46.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1ca38281c10d1054f3adccbb059f6daf8fd157befbdea921ff11b71c72670390 |
|
MD5 | 72a4bae0bb7a1aac8e95e192e6eedc7e |
|
BLAKE2b-256 | 1e86fa89d100fe1b38750c7d45bdb22f4c12b5daca0831552ab0d9e489c759f4 |
File details
Details for the file openmetadata_sqlalchemy_hive-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: openmetadata_sqlalchemy_hive-0.2.0-py3-none-any.whl
- Upload date:
- Size: 52.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 431b0eaef2f054ca4254668db738db9f8ad7b085983542778a36d774280c104a |
|
MD5 | 6e47f1afff980b03d60846343228c16c |
|
BLAKE2b-256 | f7a143bf5e513727e882ab73ea406841d06d7c7afee5a0d3aedc5a86e08c9edf |