Skip to main content

Simplify machine learning deployment for any environments.

Project description

OpenModelZ

One-click machine learning deployment at scale on any cluster (GCP, AWS, Lambda labs, your home lab, or even a single machine)

discord invitation link trackgit-views docs all-contributors

Why use OpenModelZ

OpenModelZ is the ideal solution for practitioners who want to quickly deploy their machine learning models to a (public or private) endpoint without the hassle of spending excessive time, money, and effort to figure out the entire end-to-end process.

We created OpenModelZ in response to the difficulties of finding a simple, cost-effective way to get models into production fast. Traditional deployment methods can be complex and time-consuming, requiring significant effort and resources to get models up and running.

  • Kubernetes: Setting up and maintaining Kubernetes and Kubeflow can be challenging due to their technical complexity. Data scientists spend significant time configuring and debugging infrastructure instead of focusing on model development.
  • Managed services: Alternatively, using a managed service like AWS SageMaker can be expensive and inflexible, limiting the ability to customize deployment options.
  • Virtual machines: As an alternative, setting up a cloud VM-based solution requires learning complex infrastructure concepts like load balancers, ingress controllers, and other components. This takes a lot of specialized knowledge and resources.

With OpenModelZ, we take care of the underlying technical details for you, and provide a simple and easy-to-use CLI to deploy your models to any cloud (GCP, AWS, or others), your home lab, or even a single machine.

You could start from a single machine and scale it up to a cluster of machines without any hassle. Besides this, We provision a separate subdomain for each deployment without any extra cost and effort, making each deployment easily accessible from the outside.

OpenModelZ forms the core of our ModelZ platform, which is a serverless machine learning inference service. It is utilized in a production environment to provision models for our clients.

Quick Start 🚀

Install mdz

You can install OpenModelZ using the following command:

pip install openmodelz

You could verify the installation by running the following command:

mdz

Once you've installed the mdz you can start deploying models and experimenting with them.

Bootstrap mdz

It's super easy to bootstrap the mdz server. You just need to find a server (could be a cloud VM, a home lab, or even a single machine) and run the mdz server start command. The mdz server will be bootstrapped on the server as a controller node and you could start deploying your models.

$ mdz server start
🚧 Creating the server...
🚧 Initializing the load balancer...
🚧 Initializing the GPU resource...
🚧 Initializing the server...
🚧 Waiting for the server to be ready...
🐋 Checking if the server is running...
Agent:
 Version:       v0.0.13
 Build Date:    2023-07-19T09:12:55Z
 Git Commit:    84d0171640453e9272f78a63e621392e93ef6bbb
 Git State:     clean
 Go Version:    go1.19.10
 Compiler:      gc
 Platform:      linux/amd64
🐳 The server is running at http://192.168.71.93.modelz.live
🎉 You could set the environment variable to get started!

export MDZ_URL=http://192.168.71.93.modelz.live

The internal IP address will be used as the default endpoint of your deployments. You could provide the public IP address of your server to the mdz server start command to make it accessible from the outside world.

# Provide the public IP as an argument
$ mdz server start 1.2.3.4

You could also specify the registry mirror to speed up the image pulling process. Here is an example:

$ mdz server start --mirror-endpoints https://docker.mirrors.sjtug.sjtu.edu.cn

Create your first UI-based deployment

Once you've bootstrapped the mdz server, you can start deploying your first applications. We will use jupyter notebook as an example in this tutorial. You could use any docker image as your deployment.

$ mdz deploy --image jupyter/minimal-notebook:lab-4.0.3 --name jupyter --port 8888 --command "jupyter notebook --ip='*' --NotebookApp.token='' --NotebookApp.password=''"
Inference jupyter is created
$ mdz list
 NAME     ENDPOINT                                                   STATUS  INVOCATIONS  REPLICAS
 jupyter  http://jupyter-9pnxdkeb6jsfqkmq.192.168.71.93.modelz.live  Ready           488  1/1
          http://192.168.71.93/inference/jupyter.default                                                                         

You could access the deployment by visiting the endpoint URL. The endpoint will be automatically generated for each deployment with the following format: <name>-<random-string>.<ip>.modelz.live.

It is http://jupyter-9pnxdkeb6jsfqkmq.192.168.71.93.modelz.live in this case. The endpoint could be accessed from the outside world as well if you've provided the public IP address of your server to the mdz server start command.

jupyter notebook

Create your first API-based deployment

You could also create API-based deployments. We will use a simple python server as an example in this tutorial. You could use any docker image as your deployment.

$ mdz deploy --image python:3.9.6-slim-buster --name simple-server --port 8080 --command "python -m http.server 8080"
Inference simple-server is created
$ mdz list
 NAME           ENDPOINT                                                         STATUS  INVOCATIONS  REPLICAS 
 jupyter        http://jupyter-9pnxdkeb6jsfqkmq.192.168.71.93.modelz.live        Ready           488  1/1      
                http://192.168.71.93/inference/jupyter.default                                                 
 simple-server  http://simple-server-lagn8m9m8648q6kx.192.168.71.93.modelz.live  Ready             0  1/1      
                http://192.168.71.93/inference/simple-server.default                                           
$ curl http://simple-server-lagn8m9m8648q6kx.192.168.71.93.modelz.live
...

Scale your deployment

You could scale your deployment by using the mdz scale command.

$ mdz scale simple-server --replicas 3

The requests will be load balanced between the replicas of your deployment.

You could also tell the mdz to autoscale your deployment based on the inflight requests. Please check out the Autoscaling documentation for more details.

Debug your deployment

Sometimes you may want to debug your deployment. You could use the mdz logs command to get the logs of your deployment.

$ mdz logs simple-server
simple-server-6756dd67ff-4bf4g: 10.42.0.1 - - [27/Jul/2023 02:32:16] "GET / HTTP/1.1" 200 -
simple-server-6756dd67ff-4bf4g: 10.42.0.1 - - [27/Jul/2023 02:32:16] "GET / HTTP/1.1" 200 -
simple-server-6756dd67ff-4bf4g: 10.42.0.1 - - [27/Jul/2023 02:32:17] "GET / HTTP/1.1" 200 -

You could also use the mdz exec command to execute a command in the container of your deployment. You do not need to ssh into the server to do that.

$ mdz exec simple-server ps
PID   USER     TIME   COMMAND
    1 root       0:00 /usr/bin/dumb-init /bin/sh -c python3 -m http.server 80
    7 root       0:00 /bin/sh -c python3 -m http.server 80
    8 root       0:00 python3 -m http.server 80
    9 root       0:00 ps
$ mdz exec simple-server -ti bash
bash-4.4# 

Or you could port-forward the deployment to your local machine and debug it locally.

$ mdz port-forward simple-server 7860
Forwarding inference simple-server to local port 7860

Add more servers

You could add more servers to your cluster by using the mdz server join command. The mdz server will be bootstrapped on the server and join the cluster automatically.

$ mdz server join <internal ip address of the previous server>
$ mdz server list
 NAME   PHASE  ALLOCATABLE      CAPACITY        
 node1  Ready  cpu: 16          cpu: 16         
               mem: 32784748Ki  mem: 32784748Ki 
               gpu: 1           gpu: 1      
 node2  Ready  cpu: 16          cpu: 16         
               mem: 32784748Ki  mem: 32784748Ki 
               gpu: 1           gpu: 1      

Label your servers

You could label your servers to deploy your models to specific servers. For example, you could label your servers with gpu=true and deploy your models to servers with GPUs.

$ mdz server label node3 gpu=true type=nvidia-a100
$ mdz deploy ... --node-labels gpu=true,type=nvidia-a100

Roadmap 🗂️

Please checkout ROADMAP.

Contribute 😊

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Contributors ✨

Ce Gao
Ce Gao

💻 👀
Jinjing Zhou
Jinjing Zhou

💬 🐛 🤔
Keming
Keming

💻 🎨 🚇
Teddy Xinyuan Chen
Teddy Xinyuan Chen

📖
Xuanwo
Xuanwo

🖋 🎨 🤔
cutecutecat
cutecutecat

🤔
xieydd
xieydd

🤔

Acknowledgements 🙏

  • K3s for the single control-plane binary and process.
  • OpenFaaS for their work on serverless function services. It laid the foundation for OpenModelZ.
  • sslip.io for the wildcard DNS service. It makes it possible to access the server from the outside world without any setup.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openmodelz-0.0.22.tar.gz (306.1 kB view details)

Uploaded Source

Built Distributions

openmodelz-0.0.22-py2.py3-none-musllinux_1_1_x86_64.whl (9.0 MB view details)

Uploaded Python 2 Python 3 musllinux: musl 1.1+ x86-64

openmodelz-0.0.22-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.0 MB view details)

Uploaded Python 2 Python 3 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

File details

Details for the file openmodelz-0.0.22.tar.gz.

File metadata

  • Download URL: openmodelz-0.0.22.tar.gz
  • Upload date:
  • Size: 306.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for openmodelz-0.0.22.tar.gz
Algorithm Hash digest
SHA256 130888fe2e6e98844905618a78fcb536fcefc59291f5794775d96d9d0b76e873
MD5 302835f7550c0fe37cae202838b4e067
BLAKE2b-256 cb2fbf688f6436f26be77cd840abb62d1fd01d5facbc470129c4a2499dd225e3

See more details on using hashes here.

File details

Details for the file openmodelz-0.0.22-py2.py3-none-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for openmodelz-0.0.22-py2.py3-none-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8607e7000d9c3c17d1669f0ee785d423e29e64e78968f2835ee59e68faa4a745
MD5 5baf99a3b5d29c02909cb804870eb68c
BLAKE2b-256 d1fca7c6821660fce630d5a0094fe4ba64250aa7b7df2e8986420eb8b01d8acb

See more details on using hashes here.

File details

Details for the file openmodelz-0.0.22-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openmodelz-0.0.22-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e1a299111a001aa706d0e42b20757595e14b4d896e4a0f68e451777497bbb40
MD5 cde72abebe50d001c5ff2c9b387a73af
BLAKE2b-256 8c490c2dd619e5be808875ac280a396b38711f80b469c42f956e8210db9bc8b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page