A Python client for the Openperplex API
Project description
Openperplex Python Library Documentation
The Openperplex Python library provides an interface to interact with the Openperplex API, allowing you to perform various search and web-related operations.
Installation
To install the Openperplex library, use pip:
pip install --upgrade openperplex
Initialization
To use the Openperplex library, you need to initialize it with your API key:
from openperplex import OpenperplexSync, OpenperplexAsync
api_key = "your_openperplex_api_key_here"
client_sync = OpenperplexSync(api_key)
client_async = OpenperplexAsync(api_key)
Available Methods
The library provides both synchronous and asynchronous versions of its methods. Here are the available methods:
1. search / search_stream
Perform a search query, either as a single response or as a stream.
Synchronous:
# Non-streaming search
result = client_sync.search(
query="What are the latest developments in AI?",
date_context="2024-08-25",
location="us",
pro_mode=False,
response_language="en",
answer_type="text",
verbose_mode=False,
search_type="general",
return_citations=False,
return_sources=False,
return_images=False
)
print(result)
# Streaming search
for chunk in client_sync.search_stream(
query="Explain quantum computing",
date_context="2024-08-25",
location="us",
pro_mode=False,
response_language="en",
answer_type="text",
verbose_mode=False,
search_type="general",
return_citations=False,
return_sources=False,
return_images=False
):
print(chunk)
Asynchronous:
import asyncio
async def search_async():
# Non-streaming search
result = await client_async.search(
query="What are the latest developments in AI?",
date_context="2024-08-25",
location="us",
pro_mode=False,
response_language="en",
answer_type="text",
verbose_mode=False,
search_type="general",
return_citations=False,
return_sources=False,
return_images=False
)
print(result)
# Streaming search
async for chunk in client_async.search_stream(
query="Explain quantum computing",
date_context="2024-08-25",
location="us",
pro_mode=False,
response_language="en",
answer_type="text",
verbose_mode=False,
search_type="general",
return_citations=False,
return_sources=False,
return_images=False
):
print(chunk)
asyncio.run(search_async())
2. get_website_text
Retrieve the text content of a website.
Synchronous:
result = client_sync.get_website_text("https://www.example.com")
print(result)
Asynchronous:
result = await client_async.get_website_text("https://www.example.com")
print(result)
3. get_website_screenshot
Get a screenshot of a website.
Synchronous:
result = client_sync.get_website_screenshot("https://www.example.com")
print(result)
Asynchronous:
result = await client_async.get_website_screenshot("https://www.example.com")
print(result)
4. get_website_markdown
Get the markdown representation of a website.
Synchronous:
result = client_sync.get_website_markdown("https://www.example.com")
print(result)
Asynchronous:
result = await client_async.get_website_markdown("https://www.example.com")
print(result)
5. query_from_url
Perform a query based on the content of a specific URL.
Synchronous:
response = client_sync.query_from_url(
url="https://www.example.com/article",
query="What is the main topic of this article?",
response_language="en",
answer_type="text"
)
print(response)
Asynchronous:
response = await client_async.query_from_url(
url="https://www.example.com/article",
query="What is the main topic of this article?",
response_language="en",
answer_type="text"
)
print(response)
6. custom_search / custom_search_stream
Perform a custom search query with a system prompt and user prompt.
Synchronous:
# Non-streaming custom search
result = client_sync.custom_search(
system_prompt="You are a helpful assistant.",
user_prompt="Explain the theory of relativity",
location="us",
pro_mode=False,
search_type="general",
return_images=False,
return_sources=False,
temperature=0.2,
top_p=0.9
)
print(result)
# Streaming custom search
for chunk in client_sync.custom_search_stream(
system_prompt="You are a helpful assistant.",
user_prompt="Explain the theory of relativity",
location="us",
pro_mode=False,
search_type="general",
return_images=False,
return_sources=False,
temperature=0.2,
top_p=0.9
):
print(chunk)
Asynchronous:
# Non-streaming custom search
result = await client_async.custom_search(
system_prompt="You are a helpful assistant.",
user_prompt="Explain the theory of relativity",
location="us",
pro_mode=False,
search_type="general",
return_images=False,
return_sources=False,
temperature=0.2,
top_p=0.9
)
print(result)
# Streaming custom search
async for chunk in client_async.custom_search_stream(
system_prompt="You are a helpful assistant.",
user_prompt="Explain the theory of relativity",
location="us",
pro_mode=False,
search_type="general",
return_images=False,
return_sources=False,
temperature=0.2,
top_p=0.9
):
print(chunk)
Parameters
Common Parameters
query
: The search query or question.date_context
: String Optional date for context (format: "today is 8 of october and time is 4 PM" or "YYYY-MM-DD HH:MM AM/PM"). If empty, the current date of the API server is used.location
: Country code for search context. Default is "us".pro_mode
: Boolean to enable or disable pro mode. Default is False.response_language
: Language code for the response. Default is "auto" (auto-detect).answer_type
: Type of answer format. Options are "text" (default), "markdown", or "html".verbose_mode
: Boolean to enable or disable verbose mode. Default is False.search_type
: Type of search to perform (general or news). Default is "general".return_citations
: Boolean to indicate whether to return citations. Default is False.return_sources
: Boolean to indicate whether to return sources. Default is False.return_images
: Boolean to indicate whether to return images. Default is False.
Custom Search Parameters
system_prompt
: The system prompt for custom search.user_prompt
: The user prompt for custom search.temperature
: Float value to control the randomness of the output. Default is 0.2.top_p
: Float value to control the diversity of the output. Default is 0.9.search_type
: Type of search to perform (general or news). Default is "general".
Supported Locations
The location
parameter accepts the following country codes:
๐บ๐ธ us (United States), ๐จ๐ฆ ca (Canada), ๐ฌ๐ง uk (United Kingdom), ๐ฒ๐ฝ mx (Mexico), ๐ช๐ธ es (Spain), ๐ฉ๐ช de (Germany), ๐ซ๐ท fr (France), ๐ต๐น pt (Portugal), ๐ณ๐ฑ nl (Netherlands), ๐น๐ท tr (Turkey), ๐ฎ๐น it (Italy), ๐ต๐ฑ pl (Poland), ๐ท๐บ ru (Russia), ๐ฟ๐ฆ za (South Africa), ๐ฆ๐ช ae (United Arab Emirates), ๐ธ๐ฆ sa (Saudi Arabia), ๐ฆ๐ท ar (Argentina), ๐ง๐ท br (Brazil), ๐ฆ๐บ au (Australia), ๐จ๐ณ cn (China), ๐ฐ๐ท kr (Korea), ๐ฏ๐ต jp (Japan), ๐ฎ๐ณ in (India), ๐ต๐ธ ps (Palestine), ๐ฐ๐ผ kw (Kuwait), ๐ด๐ฒ om (Oman), ๐ถ๐ฆ qa (Qatar), ๐ฎ๐ฑ il (Israel), ๐ฒ๐ฆ ma (Morocco), ๐ช๐ฌ eg (Egypt), ๐ฎ๐ท ir (Iran), ๐ฑ๐พ ly (Libya), ๐พ๐ช ye (Yemen), ๐ฎ๐ฉ id (Indonesia), ๐ต๐ฐ pk (Pakistan), ๐ง๐ฉ bd (Bangladesh), ๐ฒ๐พ my (Malaysia), ๐ต๐ญ ph (Philippines), ๐น๐ญ th (Thailand), ๐ป๐ณ vn (Vietnam)
Supported Languages
The response_language
parameter accepts the following language codes:
auto
: Auto-detect the user question language (default)en
: Englishfr
: Frenches
: Spanishde
: Germanit
: Italianpt
: Portuguesenl
: Dutchja
: Japaneseko
: Koreanzh
: Chinesear
: Arabicru
: Russiantr
: Turkishhi
: Hindi
Error Handling
The library raises OpenperplexError
exceptions for API errors. Always wrap your API calls in try-except blocks:
from openperplex import OpenperplexSync, OpenperplexError
try:
result = client_sync.search("AI advancements")
print(result)
except OpenperplexError as e:
print(f"An error occurred: {e}")
Remember to handle potential network errors and other exceptions as needed in your application.
Best Practices
-
API Key Security: Never hard-code your API key in your source code. Use environment variables or secure configuration management.
-
Error Handling: Always implement proper error handling to manage API errors and network issues gracefully.
-
Asynchronous Usage: For applications that need to handle multiple requests concurrently, consider using the asynchronous version of the client.
-
Streaming Responses: When using
search_stream
orcustom_search_stream
, remember to handle the streaming nature of the response appropriately in your application. -
Pro Mode: Use
pro_mode=True
when you need advanced search features, but be aware that it might be slower. -
Date Context: When historical context is important for your query, always specify the
date_context
parameter. -
Localization: Use the
location
andresponse_language
parameters to get more relevant and localized results.
Conclusion
The Openperplex Python library provides a powerful interface to access advanced search and web analysis capabilities. By leveraging its various methods and parameters, you can create sophisticated applications that can understand and process web content in multiple languages and contexts.
For any issues, feature requests, or further questions, please open an issue.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file openperplex-0.2.0.tar.gz
.
File metadata
- Download URL: openperplex-0.2.0.tar.gz
- Upload date:
- Size: 10.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 823099afd44dc1ebdaec7173bf118fc275741cf13f7de4996fe5d3548d48c553 |
|
MD5 | fb282d81d839f1e97881a60cd2f2c651 |
|
BLAKE2b-256 | ea8fc729c0b79b23b2ecdbc8452603754cc07774209c4a593f8aa8e966b529ea |
File details
Details for the file openperplex-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: openperplex-0.2.0-py3-none-any.whl
- Upload date:
- Size: 6.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ddaf41cd60f5af0b6f3c86d9a2a26cc836e687a35e3d268e369f24fc00b757b5 |
|
MD5 | 37542e6b89c738cf8d146ad133f60841 |
|
BLAKE2b-256 | 7be80e1cfe1a24f3e4b2ab30bc19282ad4272b5f39ecce93bc0fd22bebc0b8ff |