Skip to main content

OpenSimplex n-dimensional gradient noise function.

Project description

OpenSimplex Noise

build-status

    OpenSimplex noise is an n-dimensional gradient noise function that was
    developed in order to overcome the patent-related issues surrounding
    Simplex noise, while continuing to also avoid the visually-significant
    directional artifacts characteristic of Perlin noise.

This is merely a python port of Kurt Spencer's original code (released to the public domain) and neatly wrapped up in a package.

STATUS

Library is stable, it has pretty good test coverage but haven't gotten much optimizations.

Tested with Python 3.6, 3.7, 3.8 on Linux, MacOS and Windows

I like to think that the lack of recent commits is a sign of stable and feature complete code ;)

USAGE

Initialization:

    >>> from opensimplex import OpenSimplex
    >>> tmp = OpenSimplex()
    >>> print (tmp.noise2d(x=10, y=10))
    0.732051569572

Optionally, the class accepts a seed value:

    >>> tmp = OpenSimplex(seed=1)
    >>> print (tmp.noise2d(x=10, y=10))
    -0.4790979022623557

The seed must be a valid python number. It's used internally to generate some permutation arrays, which is used for the noise generation.

If it isn't provided the class will default to use 0 as the seed.

Available class methods:

OpenSimplex.noise2d(x, y)

Generate 2D OpenSimplex noise from X,Y coordinates.

OpenSimplex.noise3d(x, y, z)

Generate 3D OpenSimplex noise from X,Y,Z coordinates.

OpenSimplex.noise4d(x, y, z, w)

Generate 4D OpenSimplex noise from X,Y,Z,W coordinates.

Running tests and benchmarks:

First make a virtualenv and install the dev. requirements:

    virtualenv venv
    source venv/bin/activate
    pip install -r requirements.txt

and then simply run the tests:

    make test

or the basic benchmark:

    make benchmark

FAQ

  • Is this relevantly different enough to avoid any real trouble with the original patent?

    If you read the patent claims:

    Claim #1 talks about the hardware-implementation-optimized gradient generator. Most software implementations of Simplex Noise don't use this anyway, and OpenSimplex Noise certainly doesn't.

    Claim #2(&3&4) talk about using (x',y',z')=(x+s,y+s,z+s) where s=(x+y+z)/3 to transform the input (render space) coordinate onto a simplical grid, with the intention to make all of the "scissor-simplices" approximately regular. OpenSimplex Noise (in 3D) uses s=-(x+y+z)/6 to transform the input point to a point on the Simplectic honeycomb lattice so that the simplices bounding the (hyper)cubes at (0,0,..,0) and (1,1,...,1) work out to be regular. It then mathematically works out that s=(x+y+z)/3 is needed for the inverse transform, but that's performing a different (and opposite) function.

    Claim #5(&6) are specific to the scissor-simplex lattice. Simplex Noise divides the (squashed) n-dimensional (hyper)cube into n! simplices based on ordered edge traversals, whereas OpenSimplex Noise divides the (stretched) n-dimensional (hyper)cube into n polytopes (simplices, rectified simplices, birectified simplices, etc.) based on the separation (hyper)planes at integer values of (x'+y'+z'+...).

    Another interesting point is that, if you read all of the claims, none of them appear to apply to the 2D analogue of Simplex noise so long as it uses a gradient generator separate from the one described in claim #1. The skew function in Claim #2 only applies to 3D, and #5 explicitly refers to n>=3.

    And none of the patent claims speak about using surflets / "spherically symmetric kernels" to generate the "images with texture that do not have visible grid artifacts," which is probably the biggest similarity between the two algorithms.

CREDITS

  • Kurt Spencer - Original work
  • A Svensson - Python port and package author
  • CreamyCookie - Cleanup and optimizations
  • Owen Raccuglia - Test cases
  • /u/redblobgames - Fixed conversion for Java's long type, see Reddit
  • PetyaVasya - Found bug with using c_long on Windows systems, see Issue #7

LICENSE

While the original work was released to the public domain by Kurt, this package is using the MIT license. Please see the file LICENSE for details.

Expected Output

2D noise (with default seed):

image{width="100px" height="100px"}

3D noise:

image{width="100px" height="100px"}

4D noise:

image{width="100px" height="100px"}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

opensimplex-0.3.tar.gz (16.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

opensimplex-0.3-py3-none-any.whl (15.1 kB view details)

Uploaded Python 3

File details

Details for the file opensimplex-0.3.tar.gz.

File metadata

  • Download URL: opensimplex-0.3.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.3

File hashes

Hashes for opensimplex-0.3.tar.gz
Algorithm Hash digest
SHA256 59b8896c6d9dbb9cfe3c316ef7d6f4946f9787005d82fe7c06a2f3af7a9da641
MD5 320662aaa9bfd09973d6fafe1b98764c
BLAKE2b-256 60b4ca7d6b64166341a951a980628d1cf471947ac00b1eabfbc2008edb4cae32

See more details on using hashes here.

File details

Details for the file opensimplex-0.3-py3-none-any.whl.

File metadata

  • Download URL: opensimplex-0.3-py3-none-any.whl
  • Upload date:
  • Size: 15.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.3

File hashes

Hashes for opensimplex-0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 296c9d1fc5f8e50e3dda970545afeff01f1e5668c6ece86c061b43a96c6c4f50
MD5 fd7d01a26453cf60df15f709465b789f
BLAKE2b-256 9cad9b758f9ff9dcd23fc574bb3aa1de844adb1179c9be9711e9f798614d4b2f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page