Skip to main content

Open-source implementation of the Volume Data Store (VDS) standard for fast random access to multi-dimensional volumetric data.

Project description

OpenVDS is a specification and an open source reference implementation of a storage format for fast random access to multi-dimensional (up to 6D) volumetric data stored in an object storage cloud service (e.g. Amazon S3, Azure Blob storage or Google Cloud Storage). The specification is based on, but not similar to, the existing Volume Data Store (VDS) file format. The VDS format is a Bluware Inc. proprietary format, which has seen extensive industrial deployments over the last two decades. The design of the VDS format is contributed by Bluware Inc. to the Open Group Open Subsurface Data Universe Forum (OSDU) (The Open Group, u.d.).

OpenVDS has been designed to handle extremely large volumes, up to petabytes in size, with variable sized compressed bricks. The OpenVDS format is very flexible and can store any kind data representable as arrays with key/value-pair metadata. In particular, data commonly used in seismic processing can be stored along with all necessary metadata. This makes it possible to go from legacy formats to OpenVDS and back, while retaining all metadata.

OpenVDS may be used to store E&P data types such as regularized single-Z horizons/height-maps (2D), seismic lines (2D), pre-stack volumes (3D-5D), post-stack volumes (3D), geobody volumes (3D-5D), and attribute volumes of any dimensionality up to 6D. The format has been designed primarily to support random access and on-demand fetching of data, this enables applications that are responsive and interactive as well as efficient I/O for high-performance computing or machine learning workloads.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

openvds-3.4.9-cp313-cp313-win_amd64.whl (8.8 MB view details)

Uploaded CPython 3.13Windows x86-64

openvds-3.4.9-cp313-cp313-manylinux_2_28_x86_64.whl (40.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

openvds-3.4.9-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

openvds-3.4.9-cp312-cp312-win_amd64.whl (8.8 MB view details)

Uploaded CPython 3.12Windows x86-64

openvds-3.4.9-cp312-cp312-manylinux_2_28_x86_64.whl (40.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

openvds-3.4.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

openvds-3.4.9-cp311-cp311-win_amd64.whl (8.8 MB view details)

Uploaded CPython 3.11Windows x86-64

openvds-3.4.9-cp311-cp311-manylinux_2_28_x86_64.whl (40.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

openvds-3.4.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

openvds-3.4.9-cp310-cp310-win_amd64.whl (8.8 MB view details)

Uploaded CPython 3.10Windows x86-64

openvds-3.4.9-cp310-cp310-manylinux_2_28_x86_64.whl (40.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

openvds-3.4.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

openvds-3.4.9-cp39-cp39-win_amd64.whl (8.8 MB view details)

Uploaded CPython 3.9Windows x86-64

openvds-3.4.9-cp39-cp39-manylinux_2_28_x86_64.whl (40.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

openvds-3.4.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

openvds-3.4.9-cp38-cp38-win_amd64.whl (8.8 MB view details)

Uploaded CPython 3.8Windows x86-64

openvds-3.4.9-cp38-cp38-manylinux_2_28_x86_64.whl (40.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ x86-64

openvds-3.4.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

openvds-3.4.9-cp37-cp37m-win_amd64.whl (8.8 MB view details)

Uploaded CPython 3.7mWindows x86-64

openvds-3.4.9-cp37-cp37m-manylinux_2_28_x86_64.whl (40.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.28+ x86-64

openvds-3.4.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.6 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

openvds-3.4.9-cp36-cp36m-manylinux_2_28_x86_64.whl (40.2 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.28+ x86-64

openvds-3.4.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.6 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

File details

Details for the file openvds-3.4.9-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: openvds-3.4.9-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for openvds-3.4.9-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 2e33e7b6360ce9827a220fd53a92d515dcfbaa8032ae66fb880ef9c62485e031
MD5 ddef4412b045c789904638638ca9792c
BLAKE2b-256 19e5b7117ce769eb3ddabc429b6f3dc49546a607c4e73ef68c1a1cb9c457a569

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ea460ce2301d188e4362659382b278a69555b1069ed994f90c9c9ab6221b72f8
MD5 e5aa33496518c101aea4aa8524e551dd
BLAKE2b-256 25494ca915bcb836c46cc05a9f580a661fd23cf3d66b532b74820ed7d6349aea

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8fec83bcefed3fd1984e9d3ee2c0cb1adf7d47ccb26c7c1b22a254a88ba2a56
MD5 f216d3cf49fe4da3024b5a1daffbf9f7
BLAKE2b-256 f9384a7d5161ac20654b27b75a13325cddf30d8567e42a227c22faecba8315fe

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: openvds-3.4.9-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for openvds-3.4.9-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f019c98b2109b1270b528f78af64def4399d366448ef7bdc2316466c7645a689
MD5 76c8cee583046219043d66cb6ee8ccfc
BLAKE2b-256 d482c14d2c1bac5fbea0d62f4c0256aed3fecc669c7ba357b2011e4ca9b98719

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f9f0fe37e2e6b0f7b502962d28eab455b1c35ffed249abd67084edb94d556a74
MD5 ad4e481b62e3f316000cf132fdb505df
BLAKE2b-256 3d1d42089c504e66c1f6f9344787c5a3ab41ded0d0c7e872b54efcf45673a0bf

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d641ff7225b686468e4fc0bba513831f373cc67d4d68b070b3c595462379249
MD5 31eb9c879e29000b0b33df5384199e51
BLAKE2b-256 de49cf654861710e63834d674c69e73066c92dc1c71658d17d79b6611294a4ce

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: openvds-3.4.9-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for openvds-3.4.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8aa45cf176f94005291a86796b666772064dcfca32a0a0d3b76b4aafc8796625
MD5 565036a62d8c5d683b11ee6c3790a070
BLAKE2b-256 2c6de8f5c03984fa67cca5c1e6011e4fc8e29c9808516b7e1ebd225a68ee9129

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7be0375cb6ea495ec2e3e98dce00d0b425c2932e72dbdb913c025b46ac8a40e9
MD5 23adfd134be1760056b4c8080ec403e4
BLAKE2b-256 35c9b9a20ffd30724867a308c7367b528bb0e4f0c612f8b2a407fdfa910ed289

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a2977227515c2d05a2e48b8e29696263411ed2d3272de30676014ba6387b001
MD5 4c0c667a16cc08dcc042770a5630f37a
BLAKE2b-256 26bd2ec73f35f7d37679061f231716cbf62ba99a53d3b3b5ba9d65ffe4554ee3

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: openvds-3.4.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for openvds-3.4.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 56b212ec0ead9dce17fde84dcc0f2e5f20386620146f080e6c35b3df79e99597
MD5 7b0215f3242861c37230e4d7847a7734
BLAKE2b-256 9e26639d116ba0147af9ae228d5eafcc714c64640f9a34c56987734f17df04f4

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 03fff659917c7d31693503ee169db72508f45d76fac45fdc2d679b61d7b9686d
MD5 25af0b4df8ecae53084df7398ab73e7b
BLAKE2b-256 42897ebba1122d3cd1c23a05c09ed7c52d77687e6bf2431a623df7fccb873cdc

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed5322b5175d69c432d4ce98b16a978d502710c22bbcd20a07b85e1fc1c2d590
MD5 8a72c65b86f7c22423cd7b35a486daa5
BLAKE2b-256 f65e65e11342455d4362e1423e1bfc038a461f0def4d581127664295c80f39a1

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: openvds-3.4.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for openvds-3.4.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a451f455c2d72050c6b695877db6c82bef7d0345af0f5cd9c70196a87177d434
MD5 3ab67f140e3f2a6c16121e69bc5ca2d9
BLAKE2b-256 c1b3038d3e177fa006f8bd1cee76263df009cc605f78771cb4a7bb0b0c0bed5b

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 df8b91936ca282a39de9e6008105823b7173b1bac593f18756c08fcadeaa2303
MD5 e654ed24898a3e7247986491a97cf63d
BLAKE2b-256 a69ef304efb452a5a06ce0daedfa9536957032d92f55e1e2e1beb8a1043d875a

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 afc908cb2839daf490595b0d75e79c51291e759783fca90dfc132000715d94f9
MD5 3805600b44d1c5ada335f8e10b6aeaa8
BLAKE2b-256 244aae352ea2dc13d77b6709f2d9c1f4f9ce6397a83ba99fad88796e569836e2

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: openvds-3.4.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for openvds-3.4.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 594cf6ee598ba8b96ee3aa6ddefa19572da7a1947624bfa634defc3a9013bad2
MD5 8725418a86b2e958d85cc23a67ce2ea0
BLAKE2b-256 1e5b6e82a1b1df6350dac7ecff516e63d12f606febdc81213c3d878bf24cdfd2

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5226603394f658b4eb4b4338c9e7e69386573958e3b59f8840a80632a2be8f5d
MD5 7c7d0c9addbe0da22e7c9b8d6acf8b09
BLAKE2b-256 13db7cb98dd8640b77cb3819f3e35c2d91252866d873db6235c1b839904f407c

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80123b9ec2042a30b1e0afa63a12f5c830684bd9a2fc4d0012bb79ba9c726d31
MD5 233ce10d8fb65c54004ce70ac780f3e6
BLAKE2b-256 4797db6fcc1f7f10bb2ba3f47bb6e5bc844ed3b9c38d62071ed790975bc0964b

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: openvds-3.4.9-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for openvds-3.4.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4549a6383dbdd1c59a78a41cebeccb37cd8788b7cb36c11b529c70f934fe46c0
MD5 d6d81758a1b08870380339423fa9ebc3
BLAKE2b-256 98bf78163720e7dde08a71b4d8474ed9eb054a4ecf9a4d444dfeb774e170be8e

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6d055f13563359782b59563d9d71d4ee3b282d87afdd5a8ad8c2c570d5557fc3
MD5 88ea89fa6847aef61cef0364a58a77de
BLAKE2b-256 3737fe895e2784ee389fc9df7a679caead5588a8ab2798559027c5a20e3c3eb1

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e0d46e8c6c60d755820226cebba0c80b7ad7528f78c3956bf95a395bdd19575f
MD5 486bc75f2cf22388fffa4f481a7161e7
BLAKE2b-256 986223bdfbb7a0fef8fbb8be9c3c2ee49d32fedf5542cdc537bd94ac30fad4c1

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp36-cp36m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp36-cp36m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 691680a99518cd3695817e88c55656656c14afb080a63ccfa04a239f9bb7d399
MD5 e6b2c3c659766bfd2475447f66ce4814
BLAKE2b-256 395c942896e9c8c9ca61d1eed3e05b8dcc370b535ca133044ebbdfc87948cab5

See more details on using hashes here.

File details

Details for the file openvds-3.4.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvds-3.4.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d677f2917f91c7373e2a7eb91116d58e9779a13572d36edcd6818d889c6c3d4c
MD5 95892afb1444e7c5e1c752b0ddf14ff0
BLAKE2b-256 e2a817b9cc79abfb14f3a20b0354db2127fb989f049d727e8d0cfe4fcd79bd00

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page