Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have chosen a model, you can integrate it with your application through OpenVINO™ and deploy it on various devices. The OpenVINO™ Python package includes a set of libraries for easy inference integration with your products.

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available on the System Requirements page.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package may work on other Linux and Windows versions but only the versions specified in system requirements are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts. To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip.

Step 2. Activate the Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime `openvino package` OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch, TensorFlow, TensorFlow Lite, ONNX, and PaddlePaddle models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero,
OpenVINO Model Converter (OVC) `ovc` OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX, TensorFlow, TensorFlow Lite, and PaddlePaddle.
Benchmark Tool `benchmark_app` Benchmark Application** allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China may encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows, additional libraries may be necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino-2024.5.0-17288-cp312-cp312-win_amd64.whl (37.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino-2024.5.0-17288-cp312-cp312-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino-2024.5.0-17288-cp312-cp312-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

openvino-2024.5.0-17288-cp312-cp312-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

openvino-2024.5.0-17288-cp311-cp311-win_amd64.whl (37.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino-2024.5.0-17288-cp311-cp311-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino-2024.5.0-17288-cp311-cp311-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino-2024.5.0-17288-cp311-cp311-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino-2024.5.0-17288-cp310-cp310-win_amd64.whl (37.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino-2024.5.0-17288-cp310-cp310-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino-2024.5.0-17288-cp310-cp310-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino-2024.5.0-17288-cp310-cp310-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino-2024.5.0-17288-cp39-cp39-win_amd64.whl (37.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino-2024.5.0-17288-cp39-cp39-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino-2024.5.0-17288-cp39-cp39-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino-2024.5.0-17288-cp39-cp39-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file openvino-2024.5.0-17288-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e527eeca3a6c902885ddfda10bedbb4eab5104d99f18912b2a8672db992ec66d
MD5 2e5dfec0a82cd06bf684184253e86b52
BLAKE2b-256 6d8246498b2ce6d6bfb586646aeaff557643493f8e33df1a96e6293fbad5c2e6

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 3ead7bed64a32d7fa186e707acf8e4a79974d40fc750322ee36487c9c1171eed
MD5 2b848fb5661c610491d272000cf179ec
BLAKE2b-256 2ca332bc84c1d2d6fca88368ee6942a8f5e1ad042333d0e6b92b617d5d8d628c

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a1b9de4ae4cd71dc9c2af53a7e347782dc9dd0ce469cf71aa3526daebe9e22bb
MD5 dcf6305d5654f3d21ceef94fe68675b0
BLAKE2b-256 8fd1b29864a78aca421ccba1361d06fef76935cdee96b9bcca3dd43128a2d9b8

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 694e3996015b15ac43936313f2a403e934a62f169b85b17f95362cf8f8abb81d
MD5 64861a719d42f6c6dadf4e5968dc6d65
BLAKE2b-256 33cdd792a26115ac6267ee63d88b1a909269c729f1868294a4ce1b04f4472814

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a99f321fe0e454b14e7955b5573cfc141a028675548077f97553503e2ffbff3d
MD5 103a94f29362127db081d902d6babbef
BLAKE2b-256 89623f4ad50fd1373567a847edf69ecd9a4d7a434e76a57b4992745be764e010

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 599b74dc2dcf1e72e7483551cf8120491b55f4f573eae507c32fa0c4c08f34ab
MD5 f87d5cf5d7d40f503521fbe02b1d0795
BLAKE2b-256 571e2321102f86f6a30cbf02a40db4a2f08e255ae40b14a71025f1c9fb4b859a

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 6c5783f2966147117e001fbc0cbfb5a2781fdb2d889bfd007ee57934f010bf0f
MD5 ccc1d18bec1e247c253f7802baa0aaa7
BLAKE2b-256 e4a199f3bec0d63bccf17d02cadaae7517e539b2a64fb527607cb6361402f944

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a9109046fc11a55bcdf85075a589b67145a81f3bbfb216225d5784812d8a954
MD5 247e24a0ce48788963fae11db866445d
BLAKE2b-256 69e03acbe70f684648768674d0d1705d665e0e17ce5dcdbbce61d1afc41265f2

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d2b8ec4e38fd3e547e9feed009db2aa2d0939b7bfe69c898cef47c3e450ae848
MD5 13c17ad2a56b64e3a01940d0c6c2a44c
BLAKE2b-256 ea77d3d956dab3f727ab8ea54046c4497dfca2b0ae704684137881c3826b539e

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 23c781b3538371f304ba1276edc8bfee2d0ca74b928c220bb4406a3c193787dd
MD5 5402dfb7d09e0fe233701ad186b2a768
BLAKE2b-256 384a8b7d7b1a56bbcb9824d6e23f1f0e62dea1579e985aba5457ff7e79c79dd7

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2d388d4e3b17d3c8fcc0fe26cdf4bf84458c5de0f22694460ad96c0e6c9191f4
MD5 da48b87f589dfb973d559259f53be8ed
BLAKE2b-256 fd515428a4e208f71a7a97ad58415475d8b08e297dfc1cfeea836d468cce7bec

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 6d342ed759a40480f18fe1e1b67c638b76776a7d1b69b915320a7a58f73fb5e6
MD5 7b723b22e01bc4fa3e4882cb87baf1af
BLAKE2b-256 2c591bd5fa51ad4d3c30e028900a79eef993a8839ff7a687f42a28d0601f5bb4

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31209a50f87b062135b4140fda4a467f9086be1f98e3859deb9485548de93eaa
MD5 63ea7bda5ac2c143d56502c444bdae5d
BLAKE2b-256 26c154bb8edb84aca5eedad309f05fe5aaebe92d750437450c773aca7bc952e6

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 498aa2f441c8e368e693343552e40927750a82c9b716e679eae445d0850259ba
MD5 27f5fcb06ef15ac77686b45cac331ecc
BLAKE2b-256 dcdcc8325c20bb543fb44e1f7bba81335be886a71e9553e61f85af7b77df5421

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3200fa738c8c8c5ea5cc88e55b7f96f296f413e3b7df40996b7efba17bbc994e
MD5 9dacb25c0a0ec1cac8980dc88f31938d
BLAKE2b-256 fd8f1dccbbda96a0b736444cd1dea141fd2f4446b270a520e9be15bbb664e5bc

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bbd224a7a4c1611608a8e30a39e7be6dc8f66b1385325a8dcbc9c78cc2e6d195
MD5 10dd454c3513ef39cac8a915832b695b
BLAKE2b-256 a489741e87ec88e8f77844dd0d2f31c06ed1714d02f511a795c597c3b06e9bf4

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 b1d2551c5d4f9e28d72e2f0d48ee091223082bf6ebb3a6d6e6712cbdbab60511
MD5 bd62cb8a2279abb14acf9564a40e2a7c
BLAKE2b-256 a13932cb8b9a23f49499e3071b854436ec65af7d687befb30f0ef23b377f3ae9

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 54411e20c90b42614ed02762e4fc038268f08c0c78d56a94b1f99a5d5a41d293
MD5 5ffb2c32568721395ab72bf4ab54cfea
BLAKE2b-256 2287156db2f6210effc4beb7cdb8e77e588c3edcaa7080f7603d5da77d61cc24

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3fb4608bd1f6ba4f9320eede1d6cce6cf7e563c1146ed15e6310fa17adb7bfaf
MD5 2276ec7b591b770eda23684c84c9b5fc
BLAKE2b-256 aee25ec872ec2be0a81ed072ac3fd3fdff6d454d4d067430d187dfcd2c3fa424

See more details on using hashes here.

File details

Details for the file openvino-2024.5.0-17288-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.5.0-17288-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 842dc373c4a92a3c2a9bf924464390e0db980447d2370a2dbf9875c46275b169
MD5 087ea85b601314ab96be18bb9694f57f
BLAKE2b-256 959dc0f78f221aa6b2632b07adfa21169c42b9c30feda048fcb06d74f4a4b133

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page